1. The data below represents suspended solids concentrations in river water (taken from “Water Quality in Agricultural Watershed: Impact of Riparian Vegetation during Base Flow, Water Resources Bull., pp. 233-239, 1981). Values are in parts per million (ppm). Consider the following 50 observations:

 55.8 60.9 37.0 91.3 65.8 42.3 33.8 60.6 76.0 69.0
 45.9 39.1 35.5 56.0 44.6 71.7 61.2 61.5 47.2 74.5
 83.2 40.0 31.7 36.7 62.3 47.3 94.6 56.3 30.0 68.2
 75.3 71.4 65.2 52.6 58.2 48.0 61.8 78.8 39.8 65.0
 60.7 77.1 59.1 49.5 69.3 69.8 64.9 27.1 87.1 66.3

 a) Construct a relative frequency diagram (see Section 2.4, pp. 37-42) using the intervals 0 - <10, 10 - <20, 20 - <30, 30 - <40, …, 90 - <100.
 b) What portion of the concentrations are less than 50 ppm? At least 60 ppm?
 c) Explain why you cannot base a frequency diagram on the intervals 0 - 10, 10 - 20, 20 - 30, 30 - 40, …, 90 - 100.
 d) Compute the sample mean, median, variance, standard deviation, coefficient of variation, and sample range.
 e) Determine the following percentiles: 10, 25, 75, and 90.
 f) Construct a box-and-whisker plot describing the data set. (See Section 2.5.4, pp. 45-47)
 g) Briefly discuss what the box-and-whisker plot shows about your data.

2. Do problem #2-29 on p. 58 of Ayyub & McCuen.

3. Suppose that vehicles taking a particular freeway exit can turn right (R), left (L), or go straight (S). Consider observing the direction for each of three successive vehicles.

 a) List all outcomes in the event A that all three vehicles go in the same direction.
 b) List all outcomes in the event B that all three vehicles take different directions.
 c) List all outcomes in the event C that exactly two of the three vehicles turn right.
 d) List all outcomes in the event D that exactly two vehicles go in the same direction.
 e) List outcomes in D’, C ∪ D, and C ∩ D.
4. Consider a randomly selected student. Let A denote the event that the student has a Visa credit card and B denote the event that the student has a MasterCard. Suppose \(P(A) = 0.5, \) \(P(B) = 0.4, \) and \(P(A \cap B) = 0.25. \)

a) Compute the probability that the selected student has at least one of the two types of cards (i.e., the probability of the event \(A \cup B \)).

b) What is the probability that the student has neither type of card?

c) Calculate the probability that the student has a Visa card but not a MasterCard.

5. A consulting firm presently has bids out on three projects. Let \(A_i \) denote the event that they are awarded project \(i \) for \(i = 1, 2, 3. \) Suppose that \(P(A_1) = 0.22, \) \(P(A_2) = 0.25, \) \(P(A_3) = 0.28, \) \(P(A_1 \cap A_2) = 0.11, \) \(P(A_1 \cap A_3) = 0.05, \) \(P(A_2 \cap A_3) = 0.07, \) and \(P(A_1 \cap A_2 \cap A_3) = 0.01. \) Compute the probability of the following events:

a) \(A_1 \cup A_2 \)

b) \(A_1' \cap A_2' \) [Hint: \((A_1 \cup A_2)' = A_1' \cap A_2' \)]

c) \(A_1 \cup A_2 \cup A_3 \)

d) \(A_1' \cap A_2' \cap A_3' \)

Useful Excel Functions

=\text{AVERAGE}(\text{number 1, number 2, … }) \) returns the sample mean (average)

=\text{MEDIAN}(\text{number 1, number 2, … }) \) returns the sample median (50th percentile)

=\text{STDEV}(\text{number 1, number 2, … n}) \) returns the sample standard deviation

=\text{VAR}(\text{number 1, number 2, … n}) \) returns the sample standard variance