Lecture 2: Elements of Probability

CE 3710

September 2, 2015
Probability Theory: Ayyub & McCuen § 3.2-3.3.2

- Introduce elementary properties of probability
- Discuss notation and definitions

Terms and Ideas

Probability

How we describe the chance (likelihood) of different events occurring

Engineers must consider what events might occur as well as their relative likelihood and consequences.
Experiment -- any process whose outcome is subject to uncertainty

Sample Space S -- set of all possible outcomes
 (values in the population)

Sample point x -- one single outcome

Event E -- a subset of S

Simple Event -- a set containing a single sample point

Compound Event -- a set containing more than one sample point
Example: *The number of rainy days in one week*

Experiment (process): Measure daily rainfall

Sample space, S: What are all of the possible numbers of days it might rain in one week?

<table>
<thead>
<tr>
<th>SUN</th>
<th>MON</th>
<th>TUES</th>
<th>WED</th>
<th>THURS</th>
<th>FRI</th>
<th>SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

ANSWER: 0, 1, 2, 3, 4, 5, 6, or 7 days of rain.
Example: *The number of rainy days in one week*

Sample point, x: What is a single outcome of this process?

ANSWER: Weather report for one week:

<table>
<thead>
<tr>
<th>SUN</th>
<th>MON</th>
<th>TUES</th>
<th>WED</th>
<th>THURS</th>
<th>FRI</th>
<th>SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: *The amount of rain that fell in one week*

Experiment (process): Measure daily (weekly) rainfall

Sample space, S: What are all of the possible values of rainfall that may fall in one week?

![Rainfall Measurements](image)

Answer: The total amount of rain in one week can be any non-negative value (from 0 to infinity).

Note: The solution is a continuum of values that cannot be enumerated, versus in the last example, where only 8 values were possible.
Example: The amount of rain that fell in one week

Sample point, x: What is a single outcome of this process?

ANSWER: Total amount of rainfall in one week

In this week, it rained 3 inches.
Set Operations:

Let A and B be two events in the sample space S

• Union (U) – set of outcomes contained in A OR B OR Both

• Intersection (∩) -- set of outcomes contained in A AND B

• Complement (′ or c) – set of outcomes in S NOT in A

• Mutually exclusive or disjoint events; empty set ∅
Set Operations: EXAMPLE

Consider experiment where 100 cylinders are tested. A cylinder fails if not strong enough to meet standard.

Sample points: \(x = \{ \text{exactly } n \text{ cylinders fail} \} \)
where \(n = 0, 1, 2, \ldots 100 \)

Compound events:

\[A = \{ \text{no more than 10 cylinders fail} \} = \{ 0 \leq n \leq 10 \} \]
\[B = \{ \text{more than 5 cylinders fail} \} = \{ 6 \leq n \leq 100 \} \]
Probability Function

P() is a function that describes the probability of observing a given sample point or event contained in S.

A probability must be assigned to every outcome in S.

We will discuss how to assign probabilities in Lecture #5: Counting.

For now…

When all outcomes are equally likely, we can think of the probability of a particular event occurring as the fraction of time the event occurs relative to all possible outcomes in S.

Example: Rolling a die once.

There is a 1/6 chance that you roll a 1.

P(x = 1) = 1/6
Properties of Probability

1) For every event A, \(0 \leq P(A) \leq 1\)

2) If E cannot happen, then \(P(E) = 0\)

3) \(P(\emptyset) = 0\) where \(\emptyset\) is the empty set

4) For sample space S, \(P(S) = 1\)

5) For mutually exclusive events A and B, \(P(A \cap B) = 0\)
Properties of Probability

6) For any two events, \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \)

\(\rightarrow \) Draw Venn Diagram

7) For every event \(A \), \(P(A) = 1 - P(A') \)

8) If \(\{ A_1, A_2, \ldots, A_n \} \) is a collection of mutually exclusive events, then \(P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum P(A_i) \)
<table>
<thead>
<tr>
<th>Rule Type</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity rules</td>
<td>(A \cup \emptyset = A, \ A \cap \emptyset = \emptyset, \ A \cup S = S, \ A \cap S = A)</td>
</tr>
<tr>
<td>Idempotent rules</td>
<td>(A \cup A = A, \ A \cap A = A)</td>
</tr>
<tr>
<td>Complement rules</td>
<td>(A \cup \overline{A} = S, \ A \cap \overline{A} = \emptyset, \ \overline{A} = A, \ \overline{S} = \emptyset, \ \overline{\emptyset} = S)</td>
</tr>
<tr>
<td>Commutative rules</td>
<td>(A \cup B = B \cup A, \ A \cap B = B \cap A)</td>
</tr>
<tr>
<td>Associative rules</td>
<td>((A \cup B) \cup C = A \cup (B \cup C), \ (A \cap B) \cap C = A \cap (B \cap C))</td>
</tr>
<tr>
<td>Distributive rules</td>
<td>((A \cup B) \cap C = (A \cap C) \cup (B \cap C))</td>
</tr>
<tr>
<td></td>
<td>((A \cap B) \cup C = (A \cap C) \cup (B \cap C))</td>
</tr>
<tr>
<td>de Morgan's rule</td>
<td>(\overline{(A \cup B)} = \overline{A} \cap \overline{B}, \ (E_1 \cup E_2 \cup \ldots \cup E_n) = \overline{E}_1 \cap \overline{E}_2 \cap \ldots \cap \overline{E}_n)</td>
</tr>
<tr>
<td></td>
<td>(\overline{(A \cap B)} = \overline{A} \cup \overline{B}, \ (E_1 \cap E_2 \cap \ldots \cap E_n) = \overline{E}_1 \cup \overline{E}_2 \cup \ldots \cup \overline{E}_n)</td>
</tr>
<tr>
<td>Combinations of rules</td>
<td>(\overline{(A \cup (B \cap C))} = \overline{A} \cap (B \cap C) = (\overline{A} \cap \overline{B}) \cup (\overline{A} \cap \overline{C}))</td>
</tr>
</tbody>
</table>
Example

Suppose you are trying to paint a building using scaffolding. You need to consider the weather (rain, wind conditions).

<table>
<thead>
<tr>
<th>Events (Probabilities)</th>
<th>No Rain (N)</th>
<th>Rain (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Wind (H)</td>
<td>HN (0.1)</td>
<td>HR (0.08)</td>
</tr>
<tr>
<td>Medium Wind (M)</td>
<td>MN (0.3)</td>
<td>MR (0.05)</td>
</tr>
<tr>
<td>Low Wind (L)</td>
<td>LN (0.4)</td>
<td>LR (0.07)</td>
</tr>
</tbody>
</table>

Define two events:

\[
A = \{ \text{no rain} \} = \{ \text{HN, MN, LN} \}
\]

\[
B = \{ \text{can use scaffolding} \} = \{ \text{M or L wind} \} = \{ \text{MN, MR, LN, LR} \}
\]