Influence of light and temperature on the marine iron cycle:
From theoretical to global modeling

Alessandro Tagliabue,1,2 Laurent Bopp,2 Olivier Aumont,3 and Kevin R. Arrigo1
Received 14 March 2008; revised 12 February 2009; accepted 6 March 2009; published 9 June 2009.

Iron regulates net primary production (NPP) in a number of ocean regions and exists in a variety of different forms in seawater, not all of which are bioavailable. We used a relatively complex iron cycle model to examine variability in iron speciation as a function of irradiance/temperature and parameterize its first-order impact in a global ocean biogeochemistry model (OBM), which necessitated certain assumptions regarding the representation of iron chemistry. Overall, we find that higher irradiance (typical of shallower mixed layers) promotes the conversion of dissolved iron (dFe) into bioavailable forms (bFe) and increases bFe concentration by 5–53%, depending on parameter values. Temperature plays a secondary role in controlling bFe, with cold mixed layers increasing bFe concentrations. For a given irradiance and temperature, the presence of bioavailable Fe ligands increases bFe/dFe. When bioavailable Fe ligands are present, then reducing the photolability, increasing the log conditional stability, or increasing the concentration of such ligands all act to increase bFe/dFe. Such processes are currently not represented in global OBMs, where iron is typically parameterized as one pool, and we find that NPP can vary by >±20% regionally if the impact of temperature and irradiance on bFe is included, even under a constant circulation. Additionally, iron chemistry is important in controlling the depth over which phytoplankton iron limitation can be alleviated and the subsequent efficiency of iron-based NPP. We also suggest organically complexed dFe must be bioavailable if distributions of phytoplankton biomass and macronutrients are to be reconciled with observations. Our results are important in understanding the role of the irradiance/mixing regime in governing the supply of iron to phytoplankton under a changing climate. New data sets on iron speciation and rate processes will aid in refining our model.

1. Introduction

Sverdrup [1953] demonstrated that for phytoplankton to bloom, the mixed layer must be shallower than the depth at which vertically integrated photosynthesis is balanced by community respiration (the so-called critical depth). In temperate zones, the onset of stratification is driven by the springtime warming of surface waters, and if this follows a period of deep mixing, then ample macronutrients will be present in the mixed layer to fuel high rates of net primary production (NPP). In polar waters, the formation of sea ice during the austral autumn and winter will drive convective overturn, thus replenishing surface waters with dissolved nutrients. The springtime melting of seasonal sea ice results in the intense stratification of surface waters (due to freshwater input) and very cold, shallow mixed layers that are exposed to high light levels.

However, there are some areas of the world’s oceans where phytoplankton fail to bloom, even under well-stratified conditions with high macronutrient concentrations. Phytoplankton in these “high-nutrient low-chlorophyll” (HNLC) regions are generally limited by the availability of iron (Fe) and such regions include the subarctic Pacific [Tsuda et al., 2003; Boyd et al., 2004], the equatorial Pacific [Coale et al., 1996], and the Southern Ocean [Boyd et al., 2000; Coale et al., 2005]. The Southern Ocean is by far the largest HNLC region, both in terms of geographic area and the abundance of unused macronutrients [Conkright et al., 1994]. Accordingly, it has been proposed that Fe-driven variability in Southern Ocean NPP might contribute to the glacial-interglacial variability in atmospheric CO2 [Martin, 1990]. Additionally, the Fe-limited equatorial Pacific region is also a large source of CO2 to the atmosphere [Takahashi et al., 2002] and Fe mediated variability in NPP will impact the air-sea pCO2 gradient.
2. Methods

2.1. Offline Fe Supply Model

[7] As we were interested in examining the role of the irradiance/mixing regime in governing Fe cycling and speciation, we used the Fe supply model of Tagliabue and Arrigo [2006], ignoring the role of biological processes. The standard abiotic Fe cycle model consists of five Fe pools, including four dissolved (dFe) and one solid (Fe(III)s) pool (Figure 1). The dFe pools consist of two free inorganic Fe(II) and Fe(III) pools (Fe(II)s and Fe(III)s), and two ligand-bound Fe(III) pools (Fe(III)La and Fe(III)Lb). Any uncomplexed Fe(III) is converted to nonbioavailable forms via precipitation/scavenging.

[8] While the importance of Fe to phytoplankton physiology is relatively well established [e.g., Raven, 1988; Sunda and Huntsman, 1997], the impact of the irradiance/mixing regime on Fe bioavailability and cycling is less well understood. For example, temperature will impact phytoplankton growth rates [Eppley, 1972], as well as rates of Fe oxidation [Millero et al., 1987], while light controls the rate of photosynthesis [Ryther, 1956], the carbon-specific Fe demand [Raven, 1988], and the photoreduction of organically complexed Fe [Barbeau et al., 2003]. Current generation of global ocean biogeochemistry models (OBMs) only account for Fe speciation in a simplistic manner and neglect the impact of abiotic processes on Fe bioavailability [e.g., Gregg et al., 2003; Dutkiewicz et al., 2005; Aumont and Bopp, 2006; Moore and Doney, 2007]. Nevertheless, a recent regional study of Fe speciation within a 3D ecosystem model of the Ross Sea (Antarctica) demonstrated that abiotic processes increased bFe in shallow mixed layers and elevated the efficiency with which dFe could fuel NPP [Tagliabue and Arrigo, 2006]. Additionally, Weber et al. [2007] recently employed a similar Fe speciation model in a 1D NPZD model framework at the Bermuda Atlantic Timeseries, but did not focus on Fe speciation within the dFe pool and its impact on bioavailability (only Fe(III) was assumed bioavailable).

[6] In this study, we extended the work of Tagliabue and Arrigo [2006] to examine the cycling and supply of bioavailable Fe (bFe) for a suite of irradiance and temperature regimes (tropical, temperate, and polar conditions) with the goal of including variability in bFe within a global OBM and addressing the debate on Fe acquisition strategies. We were interested in (1) generalizing the relationship between bFe and light and temperature under a variety of assumptions regarding the speciation and photolability of bFe, (2) accounting for Fe speciation in a global OBM, (3) evaluating its impact under an unchanging circulation, and (4) using the new OBM to investigate the likelihood that only inorganic Fe is bioavailable (the traditional Fe' model). Environmentally driven variability in Fe chemistry has not been considered previously, yet may be critical in governing the response of HNLC ecosystems to a changing circulation, as well as phytoplankton growth rates in Fe-poor waters.
Table 1. Values for the Rate Constantsa

<table>
<thead>
<tr>
<th>T</th>
<th>k_{ox}</th>
<th>E</th>
<th>k_{pr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>−5</td>
<td>7.92×10^{-5}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1.64×10^{-4}</td>
<td>10</td>
<td>4.77×10^{-6}</td>
</tr>
<tr>
<td>5</td>
<td>3.39×10^{-4}</td>
<td>20</td>
<td>9.54×10^{-6}</td>
</tr>
<tr>
<td>10</td>
<td>7.02×10^{-4}</td>
<td>30</td>
<td>1.43×10^{-5}</td>
</tr>
<tr>
<td>15</td>
<td>1.45×10^{-3}</td>
<td>40</td>
<td>1.91×10^{-5}</td>
</tr>
<tr>
<td>20</td>
<td>3.01×10^{-3}</td>
<td>50</td>
<td>2.39×10^{-5}</td>
</tr>
<tr>
<td>25</td>
<td>6.23×10^{-3}</td>
<td>70</td>
<td>3.34×10^{-5}</td>
</tr>
</tbody>
</table>

aFor Fe(II) oxidation (k_{ox} s$^{-1}$) and Fe(III)La photoreduction (k_{pr} s$^{-1}$) for the range of temperatures (T, °C) and irradiances (E, W m$^{-2}$) used in this study.

Redox speciation may change following oxidation to Fe(III) and subsequent precipitation as oxyhydroxides. We assume that Fe(III)Lb complexes are photolabile and can be photo-reduced to produce Fe(II), via ligand-to-metal charge transfer [Barbeau et al., 2001], at rates that are a function of the incident PAR [Rijkenberg et al., 2005]. Although photoreduction appears to be lower (per quantum) for PAR than for UV (not included in this study), most all measured photoreduction has typically been ascribed to PAR [Rijkenberg et al., 2005; Maldonado et al., 2005], which is much more abundant than UV radiation. Indeed, numerous experiments measuring photoreduction by natural sunlight used polycarbonate bottles that excluded UV radiation [e.g., Barbeau et al., 2001; Maldonado et al., 2005].

[9] The rate of change in Fe(II) (μmol m$^{-3}$ s$^{-1}$) is

$$Q_{Fe(II)} = -k_{ox}Fe(II) + k_{pr}Fe(III)La + k_{prLb}Fe(III)Lb$$

and the rate of change in Fe(III) (μmol m$^{-3}$ s$^{-1}$) is

$$Q_{Fe(III)} = k_{ox}Fe(II) - k_{F(III)La}Fe(III)[La] + k_{F(III)La}Fe(III)[La]$$

$$- k_{F(III)Lb}Fe(III)[Lb] + k_{F(III)Lb}Fe(III)[Lb]$$

$$- k_{pr}Fe(III) + R_{Fe(III)}Fe(III)s$$

where Fe(III) is produced by oxidation of Fe(II) ($k_{ox}Fe(II)$) and is lost by precipitation to Fe(III)s ($k_{pr}Fe(III)$). Rate constants for the formation (4×10^4 M$^{-1}$ s$^{-1}$) and dissociation (2×10^{-7} s$^{-1}$) of Fe(III)La (to yield a log conditional stability constant of 11.32 M$^{-1}$) are taken from measurements of Witter and Luther [1998]. Maldonado et al. [2005] demonstrated significant in situ phytoplankton uptake of Fe-ligand complexes with kinetic characteristics that were similar to desferoxamine (DFO) ligands in the Fe-limited Southern Ocean. We therefore ascribe rate constants for the formation (19.6×10^5 M$^{-1}$ s$^{-1}$) and dissociation (1.5×10^{-6} s$^{-1}$) of Fe(III)Lb (to yield a log conditional stability constant of 12.12 M$^{-1}$) in accordance with the measured kinetics of DFO [Witter et al., 2000] and assume that Fe(III)Lb complexes are photostable [Barbeau et al., 2003] (we explore the sensitivity to these assumptions later). This agrees well with the measurements in the Atlantic Ocean of low-concentration ligands with log conditional stability constants of between 12 to 13 M$^{-1}$ and a higher-concentration ligand typified by a weaker log conditional stability constant of around 11 M$^{-1}$ [Cullen et al., 2006]. The concentrations of La and Lb are set to 2 nM and 0.6 nM (Fe equivalents), respectively.

[10] The rate of change in Fe(III)La (μmol m$^{-3}$ s$^{-1}$) is modeled as

$$Q_{Fe(III)La} = k_{F(III)La}Fe(III)[La]$$

$$- k_{F(III)Lb}Fe(III)La - k_{pr}Fe(III)La$$

where Fe(III)La can be photoreduced ($k_{pr}Fe(III)La$) to form Fe(II) and thermodynamically dissociates to Fe(III) ($k_{F(III)La}Fe(III)La$). Fe(III)La complex formation is as described above.

[11] The rate of change in Fe(III)Lb (μmol m$^{-3}$ s$^{-1}$) is

$$Q_{Fe(III)Lb} = k_{F(III)La}Fe(III)[Lb]$$

$$- k_{F(III)Lb}Fe(III)Lb - k_{prLb}Fe(III)Lb$$

where Fe(III)Lb is formed as per Fe(III)La and is lost via thermodynamic dissociation ($k_{F(III)Lb}Fe(III)Lb$). When Lb is assumed to be photostable, photoreduction ($k_{prLb}Fe(III)Lb$) is an additional loss of Fe(III)Lb and source of Fe(II). The rate constant for photoreduction of Fe(III)Lb (k_{prLb}) is assumed to be the same as for Fe(III)La (in the absence of any ligand-specific information). On the other hand, if we assume that Fe(III)Lb complexes are photostable, then k_{prLb} is assumed to be zero.

[12] Fe(III)s is produced via precipitation/scavenging of Fe(III) ($k_{pr}Fe(III)$) and is remineralized back to Fe(III) at a rate of 0.05 d$^{-1}$. Therefore, the rate of change in Fe(III)s (μmol m$^{-3}$ s$^{-1}$) is simply

$$Q_{Fe(III)s} = k_{pr}Fe(III) - R_{Fe(III)s}Fe(III)s$$

and does not include sinking. For reference, we include the rate constants for Fe(II) oxidation and Fe(III)La photoreduction (k_{ox} and k_{pr}, respectively, s$^{-1}$) in Table 1.

2.2. Model Experiments

[13] Quasi-equilibrium model simulations were conducted under a range of mixed layer irradiances (0 to 75 W m$^{-2}$) and temperatures (−5 to 25°C, with −5 used to provide a “lower bound”) by running the model at a time step of 1 s for >200 days (to ensure equilibration). The total Fe pool is fixed at 0.5 nM and reflects typical oceanic concentrations in HNLC regions [e.g., Johnson et al., 1997; Coale et al., 2005]. dFe includes Fe(II), Fe(III), Fe(III)La, and Fe(III)Lb, bFe is assumed to be Fe(II), Fe(III) and Fe(III)Lb, while total Fe (tFe) is dFe + Fe(III)s. Fe$'$ is defined as the sum of the free inorganic Fe species (Fe(II) and Fe(III)). Rather than the absolute Fe concentrations, we were interested in appraising the proportion of the total Fe pool present as dissolved Fe (dFe/tFe), the proportion of the dFe pool present as bFe (bFe/dFe), as well as the proportion of the dFe pool present as Fe(II) (Fe(II)/dFe).

[14] In our standard case, we assume Lb is present and photostable with the kinetic characteristics of DFO [Witter et al., 2000]. We conducted four major sensitivity tests during our investigations. First, we assumed there was no Lb and only inorganic Fe is bioavailable, i.e., conforming to...
the Fe′ model of bioavailability. Second, we examined the impact of assuming Lb is photolabile (i.e., \(k_{prLb} \) in equation (4) is not zero). Third, we studied the impact of different Lb concentrations (the concentration of Lb was halved and doubled). Fourth, the log conditional stability of Fe(III)Lb complexes was increased to 12.34 M\(^{-1}\) (by decreasing both the formation and dissociation rate constants as per phytic acid) and decreased to 11.00 M\(^{-1}\) (by increasing the dissociation rate constant as per phaeophytin). Modifications to the ligand kinetics followed measurements of phytic acid and phaeophytin ligands [Witter et al., 2000].

2.3. Model Caveats

[15] In this study we did not include the cycling of either hydrogen peroxide (H\(_2\)O\(_2\)) or superoxide (O\(_2\))\(_2\)). The cycling of both compounds are also controlled by photochemical processes and can be involved in the oxidation of Fe(II) and the back reduction of Fe(III) [King et al., 1995]. While any irradiance-driven maxima in photochemical radicals could enhance Fe(II) production from Fe(III) (further increasing bFe), it should be noted that free Fe(III) concentrations were extremely low during our simulations (always <4 pM), with most Fe(III) present as either organic complexes or precipitates (Fe(III)s in our notation). Moreover, H\(_2\)O\(_2\) and O\(_2\) are also involved in the redox cycle of copper (Cu) [Zafiriou et al., 1998] and since Cu is likely to be involved in the phytoplankton uptake of organically bound Fe [Maldonado et al., 2006], the inclusion of such features is by no means straightforward.

[16] Our model is similar to that of Weber et al. [2007] in many respects, but is employed to address the role of abiotic processes in governing bFe. Notable differences in the Weber et al. [2007] model include the presence of H\(_2\)O\(_2\) and O\(_2\), but without a link to the availability of organically complexed Fe (in the sense of Maldonado et al. [2006]), and the inclusion of an Fe(III) colloidal pool (that is assumed to be “dissolved”). In our study, we assume Fe(III) contains both “free inorganic” species and colloids <0.2 \(\mu \)m in diameter, and assume both can be complexed by organic ligands and all uncomplexed Fe(III) can precipitate and be scavenged by particles. It is important to note that the model of Weber et al. [2007] assumes that only free inorganic Fe(III) is available for phytoplankton uptake (i.e., conforming to the Fe′ uptake model [Hudson and Morel, 1990]), despite evidence to the contrary [e.g., Hutchins et al., 1999; Maldonado and Price, 2001; Blain et al., 2004; Maldonado et al., 2005, 2006] and that >99% of dFe is typically organically complexed. We will explore the importance of such an assumption during this study and the global impact of assuming only inorganic Fe is bioavailable.

2.4. PISCES Global Ocean Biogeochemistry Model

[17] The Pelagic Integration Scheme for Carbon and Ecosystem studies (PISCES) global OBM is fully described by Aumont and Bopp [2006]. In brief, PISCES includes two phytoplankton functional groups (nanophytoplankton and diatoms), mesozooplankton and microzooplankton, 2 detrital size classes, calcium carbonate, dissolved inorganic carbon, carbonate, dissolved organic carbon, nitrate (NO\(_3\)), phosphate (PO\(_4\)), Silicic acid (Si(OH)\(_4\)), and iron (Fe) [Aumont and Bopp, 2006]. Fixed “Redfield ratios are employed for NO\(_3\) and PO\(_4\)

3. Results and Discussion

3.1. Sensitivity Tests With the Fe Supply Model

3.1.1. Photostable Bioavailable Ligand

[20] Beginning with our standard case, a photostable bioavailable ligand (Lb) all but eliminates nonbiogenic losses of dFe and results in bFe making up a greater proportion of dFe as irradiance increases (Figures 2a and 2b). Over 99.9% of Fe is complexed by either Lb or Na across the full range of irradiances (i.e., dFe \(\cong \) tFe, Figure 2a). Although increased light elevates the photoproduction of inorganic Fe from
Fe(III)La (Table 1), it is rapidly complexed by the photo-
stable Lb to form Fe(III)Lb and the losses of dFe and
accumulation of Fe(II) are negligible (Figures 2a and 2c).
This also results in little sensitivity to temperature. Nev-
evertheless, since bFe/dFe is lower in the dark, light is important
in providing a means by which the dFe pool can be mobilized
and complexed by Lb, thereby increasing bFe/dFe by over
50% across our range of irradiances (Figure 2b).

3.1.2. No Bioavailable Ligand
[21] If Lb is absent, then bFe/dFe declines significantly,
relative to our standard case, but still increases with light.
During this scenario, bFe is assumed to be made up only of
free inorganic Fe(II) and Fe(III) and reflects the traditional Fe
model of phytoplankton Fe uptake [Hudson and Morel,
1990]. Since Lb is no longer present to buffer bFe concen-
trations (bFe = Fe), dFe/tFe declines and bFe/dFe is reduced
drastically (by over 50% relative to the photostable bioavail-
able ligand case, Figures 2d and 2e). That said, photochem-
istry still results in greater bFe/dFe at high light levels,
although the temperature dependency of Fe(II) residence
times (Table 1) reduces Fe(II)/dFe, and thus bFe/dFe, in
warm waters (Figures 2e and 2f). Indeed, if there are no
bioavailable Fe ligands present, it appears that bFe (i.e., free
inorganic Fe) can only approach 10% of the dFe pool only in
cold and well lit mixed layers (Figure 2e). This is likely to
have implications for the viability of the Fe' uptake model in
warm waters, even if they are well lit. Since any free Fe(III) is
either complexed by the nonbioavailable ligand (La) or lost
as Fe(III)s, most of this bFe is present as Fe(II) (Figure 2f).

3.1.3. Photolabile Bioavailable Ligand
[22] Assigning photolability to Fe(III)Lb reduces bFe/
dFe, relative to the standard case, and results in a greater
sensitivity to temperature. Fe(III)Lb is more labile when
photoreduction is an additional loss and the increased
turnover of Fe at high light levels drives greater nonbio-
genic losses of dFe (as Fe(III)s) and reduces dFe/tFe (by up
to 20% at very high irradiances; Figure 2g). On the other
hand, the photoreduction of Fe(III)Lb results in a significant
proportion of dFe being present as Fe(II) (up to 20% at the
highest light and coldest temperatures; Figure 2i). Although
bFe/dFe is reduced, it remains much greater than when Lb
was absent and increases with irradiance (Figure 2h). Field
observations by Maldonado et al. [2006] suggest that bio-
available organically complexed Fe in the Southern Ocean
was likely to be photolabile. The photolability of Fe ligands
depends on the functional moiety of the Fe binding group
and typically requires an α-hydroxy acid group [Barbeau et
al., 2003]. In seawater, a currently limited data set suggests
that α-hydroxy acid groups are present in situ, but typically occur
alongside hydroxamate and catecholate groups as mixed
moiety ligands [Reid et al., 1993; Martínez et al., 2000,
Barbeau et al., 2001; Macrellis et al., 2001].

3.1.4. Bioavailable Ligand Concentration
[23] The ratios of bFe/dFe and dFe/tFe were proportional
to the concentration of Lb, with changes being greater when
Fe(III)Lb was photolabile. It is noteworthy that the concen-
tration of Lb is important in setting the intercept of the bFe/
dFe relationship (Figure S1), which would relate to the bFe/
dFe value in deep waters.1 Recent work has shown that
there is a wide degree of variability in oceanic ligand
concentrations, especially in coastal waters and a consis-
tently positive correlation between the concentrations of
ligands and dFe is observed across a wide variety of ocean
systems (see the compilation given by Buck and Bruland
[2007]). We also find that dFe/tFe is elevated when ligand
concentrations are higher and we would suggest that there
should also be a concomitant increase in Fe bioavailability
(Figure S1). While constraining the sources of Fe binding
ligands in seawater remains speculative, their role in con-
trolling the concentration of dFe [Buck and Bruland, 2007;
Buck et al., 2007; this study], and possibly also bFe (this
study), highlights the need for more information on their
sources and sinks in order to better model this variability.

3.1.5. Bioavailable Ligand Kinetics
[24] While changing the kinetics of Lb does change the
absolute values associated with bFe/dFe and Fe(II)/dFe, the

1Auxiliary materials are available in the HTML. doi:10.1029/2008GB003214.
positive trends with irradiance are robust. Unsurprisingly, reducing the log conditional stability constant reduces bFe/dFe and dFe/fFe, but increases Fe(II)/dFe (Figure S2). Reducing the formation and dissociation rate constants, but slightly increasing the overall log conditional stability constant, slightly reduces dFe/fFe and bFe/dFe, with little change in Fe(II)/dFe (Figure S2). As seen previously, these trends are exacerbated when Fe(III)Lb is photolabile. Nevertheless, bFe/dFe increases with light, with temperature only playing a secondary role.

3.2. Generalized Relationship Between bFe and Light and Temperature

[25] Regardless of how we chose to parameterize bFe or the kinetic/photochemical characteristics of Lb in our Fe cycle model, we found that the proportion of the dFe pool present as bFe increases with greater irradiance. We tested 3 fundamental assumptions regarding bioavailable Fe ligands (present and photostable, present and photolabile, and absent), as well as 3 different concentrations and kinetic characteristics of Lb, and found a consistent positive trend in bFe/dFe with respect to irradiance (Figures 2b, 2e, and 2h). The increase in bFe/dFe can be as great as 53% (when Lb is present and photostable across all temperatures), or as low as 5% (when Lb is absent at 25°C) and is dependent on bioavailability assumptions and the mixed layer temperature. If the ligand pool has a high lability, or is absent, then there is also an inverse relationship between bFe/dFe and temperature (but this is a second-order effect relative to the role of irradiance). Overall, this would suggest that the ocean bFe pool is highly dynamic and responds to variability in abiotic processes that are mediated by the irradiance/mixing regime of surface waters, in addition to any changes in exogenous Fe inputs. For example, the increase in irradiance that is associated with the springtime stratification of the mixed layer will not only impact phytoplankton photosynthesis (as noted by Sverdrup [1953]), but will also promote the conversion of Fe to bioavailable forms. Accordingly, abiotically controlled increases in bFe can contribute to the elevated primary productivity of stratified offshore HNLC regions [Moore and Doney, 2006] or the greater efficiency of mesoscale Fe fertilization experiments in shallow mixed layers [de Baar et al., 2005]. In general, for a given irradiance and temperature, the presence of bioavailable Fe ligands increases bFe/dFe, and if bioavailable Fe ligands are already present, then reducing their photolability, increasing their log conditional stability, or increasing their concentration all act to increase bFe/dFe.

3.3. Measurements to Test Fe Models

[26] As in situ measurements of bFe will require new and innovative investigations, Fe(II) might provide a potential means to assess the importance and nature of abiotic Fe cycling. Recent advances have permitted the shipboard determination of seawater Fe(II) concentrations [King et al., 1995; Bowie et al., 2002; Croot and Laan, 2002; Boye et al., 2006], alongside the more typical dFe measurements. In our model experiments, Fe(II)/dFe increases with light and can make up between 0 and 20% of the dFe pool (depending on light and temperature), but remains near zero if bioavailable ligands are assumed photostable. Consistent with these results, measured Fe(II)/dFe ratios were between 0.03 and 0.35 in the Atlantic and Southern Oceans and displayed a positive relationship with irradiance [Bowie et al., 2002; Boye et al., 2006], although Boye et al. [2006] noted the potential for biologically mediated production in subsurface layers (a process not present in our model). During SOIREE, relatively high concentrations of Fe(II) persisted for up to 4 days after the final Fe infusion [Croot et al., 2001; Bowie et al., 2001]. Our results suggest that it is possible for photo-chemistry to maintain appreciable concentrations of Fe(II) in the mixed layer without necessitating the inclusion of Fe(II)-specific ligands (especially in the cold waters of the Southern Ocean; Figure 2f). Overall, we find that predictions of Fe(II)/dFe exhibit a high degree of variability that is connected to the turnover time of the dFe pool and the residence time of Fe(II) (Figures 2e, 2f, and 2i). Future in situ measurements of Fe(II)/dFe, which also address the irradiance/mixing regime, might assist in the appraisal of different Fe cycle formulations. That said, we note the difficulty of making such measurements in oxygenated seawater (see Methods), but are encouraged by recent progress by the GEOTRACES community [Henderson et al., 2007].

3.4. Fe Chemistry in PISCES

3.4.1. Impact of Fe Chemistry

[27] Including Fe chemistry in PISCES causes phytoplankton to be impacted by changes in Fe speciation with depth and permits us to capture the processes driving bFe supply and demand. As such, we find phytoplankton productivity and species composition respond to abiotic processes that drive bFe supply. Although Southern Ocean NPP changes little under an unchanging circulation, we do find a reduction in diatom abundance results (Figure 3). This is because the irradiance driven reduction in bFe concentrations causes diatoms to be less competitive than smaller nanophytoplankton. In the equatorial Pacific, we find predictions of annual net primary production (NPP) to be more sensitive to the inclusion of chemical processes (+30 g C m⁻² a⁻¹ or ±20%), even if there are no changes in circulation. Under a climatologically forced circulation [Aumont and Bopp, 2006], equatorial Pacific NPP actually increases if bFe varies with light and temperature (Figure 4). This is despite the fact the bFe concentration (relative to dFe) is reduced, which increases Fe limitation. Accordingly, in the equatorial Pacific region, we find that subsurface bFe concentrations are reduced (Figure 4), because of the lower light levels therein. This indeed reduces the in situ phytoplankton utilization (subsurface NPP declines; Figure 4), but also permits greater quantities of bFe to reach well-lit surface waters. Phytoplankton NPP is more efficient at higher irradiance levels (the Fe/C ratio decreases with light; Figure 4) [Raven, 1988], and total NPP therefore increases by more in the surface than it declined in the subsurface. This vertical redistribution of bFe toward well lit surface waters, where it can more efficiently fuel carbon fixation, is exacerbated in upwelling zones, as excess bFe is effectively transported to surface waters. Additionally, the greater bFe supply to surface waters acts to increase diatom abundance over that of nanophytoplankton (Figure 3).
3.4.2. Improving the Realism of PISCES

As well as impacting NPP, including Fe chemistry improves the spatial distribution of equatorial Pacific phytoplankton biomass in PISCES. In the previous version of PISCES [Aumont and Bopp, 2006], a minimum Fe threshold (of 0.01nM) was necessary to accurately represent the biogeochemical dynamics of the equatorial Pacific region. If this parameterization is removed, all the Fe that is upwelled in the eastern equatorial Pacific is utilized close to the upwelling sites and the phytoplankton bloom cannot propagate westward (compare Figure 5a with Figures 5b and 5c). Therefore, such a parameterization (which represents an additional, yet unconstrained, Fe source) was deemed necessary to accurately represent the distribution of tropical Pacific chlorophyll a, especially in spring, as well as the transition between Fe and NO$_3$ limitation [see Aumont and Bopp, 2006]. Furthermore, simulations with coupled climate models show that interannual variability is poorly represented in models that do not have a minimum Fe threshold, since the degree of Fe limitation is too great [Schneider et al., 2008]. However, it is encouraging that when we include the first-order impact of Fe speciation in PISCES, we are able to represent the zonal extent of equatorial Pacific chlorophyll a, without needing to include an unconstrained Fe source (Figure 5d). This suggests that variability in Fe speciation and bioavailability might be an important factor controlling tropical Pacific phytoplankton biomass and perhaps also interannual variability.

3.4.3. Assessing the Importance of Organically Complexed Fe to Phytoplankton

Distributions of NO$_3$ and phytoplankton chlorophyll biomass from PISCES suggest that it is unlikely that phytoplankton are only limited by inorganic Fe. This is due to the drastic reduction in bFe/dFe if only inorganic Fe is bioavailable (Figure 2e). It is only in waters colder than 0°C that bFe can exceed 10% of the dFe pool, and the degree of Fe limitation, especially in warm waters, is chronic. Accordingly, when we use the predictions of bFe/ dFe from Figure 2e to calculate bFe concentrations in PISCES pervasive Fe limitation markedly reduces phytoplankton chlorophyll a production and NO$_3$ uptake and their distributions do not match observations (Figures 6e and 6f). Although phytoplankton biomass (when bFe = Fe$^+$) can increase slightly if the sedimentary and atmospheric sources of Fe are increased tenfold, this results in unrealistically high residual dFe concentrations (Figure 6d). It therefore appears likely that the majority of phytoplankton can access organically complexed iron and the Fe$^+$ model is unlikely to be the dominant form of Fe uptake.

4. Perspectives

4.1. Bioavailable Fe Pools

The ability to access organically complexed Fe may be a common feature of phytoplankton that have a high requirement for Fe, even in cold waters. We find that bioavailable Fe ligands can drastically increase bFe concentrations (Figure 2), which suggests that their production and uptake would be an advantageous growth strategy for phytoplankton growing in HNLC regions. In the field, uptake of organically complexed Fe has been demonstrated in large diatoms from both the subarctic Pacific [Maldonado and Price, 1999] and the Southern Ocean [Maldonado et al., 2005] and phytoplankton growth is enhanced in the
presence of organically complexed Fe during incubation experiments [Ozturk et al., 2004], which is suggestive of an increase in bFe. In accord, we find assuming that only inorganic Fe is bioavailable results in unrealistic distributions of NO₃ and chlorophyll a when simulated in PISCES (Figures 6e and 6f). The importance of organically complexed Fe to phytoplankton might depend on their affinity for Fe [Tagliabue and Arrigo, 2006], which is typically a function of the cell surface area to volume ratio [e.g., Timmermans et al., 2004]. It is therefore reasonable to suggest that large diatoms from the subarctic Pacific and Southern Ocean that take up organically complexed Fe [Maldonado and Price, 1999; Maldonado et al., 2005] likely also have a high requirement for Fe. In support of this hypothesis, work in the North Atlantic by Blain et al. [2004] demonstrated that the ability of phytoplankton to access organically complexed Fe increased with increasing cell size (and thus a reducing surface area to volume ratio). The bioavailability of Fe bound to distinct ligand types is likely to be dependent on the denticity (the number of ligands minus Fe atom bonds) of the Fe-L complex [Boukhalfa and Crumbliss, 2002], as well its age and molecular weight [Chen et al., 2003]. If so, Fe bound to hexdentate ligands, such as DFO, would be less available than Fe bound to the tridentate phytic acid [Maldonado et al., 2005], further highlighting the need for more information regarding the ocean Fe ligand pool (including those that may complex Fe(II) [e.g., Willey et al., 2008]).

4.2. Representing Fe Speciation in Global OBMs

By representing Fe chemistry in the PISCES global OBM, we find that Fe-regulated NPP is more efficient at shallow depths. This is due to the greater bFe supply and reduced bFe demand when irradiance is high. Under a constant circulation, upwelling regions (such as the equatorial Pacific) have a particular sensitivity to depth-dependent variability in bFe because any excess Fe can be efficiently transported to surface waters. This demonstrates that NPP in HNLC areas can be sensitive to the vertical variability in bFe that results from fluctuations in irradiance and temperature. We hypothesize that abiotic processes dictate the depth over which bFe concentrations will be

Figure 4. The difference in annual depth integrated NPP (gC m⁻² a⁻¹) between a climatological simulation (i.e., no changes in circulation) where bFe varies as per Figure 2h and an identical simulation where bFe = dFe (i.e., no abiotic variability). The insets show the vertical variability in the proportion of dFe present as bFe (bFe/dFe, top left), the absolute change in annual NPP (g C m⁻³ a⁻¹, bottom left), and the phytoplankton Fe/C ratio (μM:M, top right) taken from the boxed region of the equatorial Pacific.
sufficient to alleviate Fe limitation of phytoplankton growth. In turn, this determines the physical environment within which phytoplankton can achieve net growth, as well as the efficiency of Fe-based NPP (via the irradiance dependency of Fe/C ratios).

Our results have important implications for the modeling of both future and past ocean biogeochemistry. Current global OBMs typically only include one pool of dFe, accounting for ligand complexation and nonbiogenic losses in a relatively simple fashion [e.g., Gregg et al., 2003; Dutkiewicz et al., 2005; Aumont and Bopp, 2006; Moore and Doney, 2007] and therefore ignore the role of reactions that are controlled by light and temperature. Although such shortcomings can be overcome for equilibrium simulations by compensatory parameters or processes (e.g., the minimum Fe threshold in PISCES), their absence may prove significant during simulations that consider future changes in the oceans irradiance/mixing regime. For example, climate models suggest that the future ocean will become more stratified [e.g., Sarmiento et al., 2004], which will reduce the upwelling supply of nutrients, including Fe, but will also elevate mixed layer irradiance levels and hence Fe bioavailability. Models utilizing simple parameterizations of seawater Fe chemistry will be unable to account for the role of such processes in governing bFe concentrations and thus the degree of phytoplankton Fe limitation. While understanding the impact of climate change on ocean biogeochemistry will necessitate a holistic consideration of a variety of ocean processes (e.g., changes in vertical nutrient supply and dust deposition, as well as photoadaptation to changing mixed layer irradiance), we would suggest that for a given mixed layer Fe inventory (and for the assumptions inherent in our formulation of abiotic Fe chemistry), greater stratification will elevate bFe/dFe and increase the efficiency of Fe-based NPP (via the reduced Fe demand).

If the physical circulation were to change (as is probable for future or past climates), one would expect NPP to be impacted by the variability in bFe that arises from changes in the light and temperature environment in HNLC regions. However, it is important to note that our approach here only addresses the minimum sensitivity of NPP to Fe chemistry. We do not represent all the degrees of freedom present in the prognostic Fe supply model in PISCES, only the impact of light and temperature on bFe under idealized mixed layer conditions. For example, we find bFe/dFe changes slightly as a function of the tFe concentration, but sensitivity experiments between 0.01 and 5 nM show that variability in bFe/dFe is always <1% of the mean bFe/dFe at a given irradiance and temperature. However, biotic feedbacks, such as the production of Fe binding ligands, are not represented and future global modeling will need to account for the recently observed spatial variability in ligand concentrations [e.g., Buck and Bruland, 2007] and possibly also their kinetic characteristics and photolability. Nevertheless, our model will permit the evaluation of the potential importance of abiotic Fe cycling under a changing irradiance/mixing regime. In doing so, it will also be important to consider the impact of any ecosystem response (e.g., changes in phytoplankton physiology, growth strategies, species composition and associated food web...
structure) to physically driven variability in bFe concentrations on biogeochemical cycling in HNLC regions.

5. Summary and Conclusions

[34] Using a relatively complex model of abiotic Fe cycling, we find that the irradiance/mixing regime exerts a strong control on the speciation of Fe and the subsequent supply of bFe to phytoplankton. Although different representations of the Fe cycle result in variability in bFe/dFe, the positive trend with light is robust (for any given Fe model formulation). We find that bioavailable Fe ligands can greatly increase the bFe concentration and highlight the role of light in driving the transfer of Fe from unavailable to bioavailable species. On the other hand, inorganic Fe is highly sensitive to the seawater temperature and can only accumulate in mixed layers that are cold and well lit. For a given irradiance and temperature, bFe/dFe increases with the presence of bioavailable Fe ligands, reduced ligand photolability, greater ligand conditional stability, and increased...

Figure 6. Surface concentrations of annually averaged (a) dissolved Fe (nM), (b) NO₃ (µM), and (c) chlorophyll a (mg m⁻³) when Fe chemistry is included in PISCES as per Figure 2h. (d) Surface water dFe (nM) if sedimentary and atmospheric sources are increased tenfold when Figure 2e drives bFe (please also note the scale change between Figures 2a and 2d). (e and f) Annually averaged chlorophyll a (mg m⁻³) and NO₃ (µM) when only inorganic Fe is assumed to be bioavailable (using the results from Figure 2e).
lign concentrations. In our study it was necessary to make certain assumptions regarding abiotic Fe chemistry and more information on variability in abiotic rate processes (Fe(II) oxidation, Fe(III)L photoreduction, lignid complexation/ dissociation and Fe(III) precipitation to solids) will help in further constraining the our conclusions.

The influence of the irradiance/mixing regime on bFe is neglected by all contemporary global OBMs, but will be important if we wish to account for the impact of expected changes in the physical structure of the mixed layer on Fe speciation. We outline a means by which the first-order efficiency of Fe-based NPP. It also appears unlikely that the minimum sensitivity to a variety of Fe cycle formula- speciation. We outline a means by which the first-order changes in the physical structure of the mixed layer on Fe is neglected by all contemporary global OBMs, but will be important if we wish to account for the impact of expected changes in the physical structure of the mixed layer on Fe speciation. We outline a means by which the first-order efficiency of Fe-based NPP. It also appears unlikely that the minimum sensitivity to a variety of Fe cycle formula-

References

Barbeau, K., E. L. Rue, K. W. Bruland, and A. Butler (2001), Photochemical cycling of iron in the surface ocean mediated by microbial(III)-

Barbeau, K., E. L. Rue, C. G. Trick, K. W. Bruland, and A. Butler (2003), Photochemical reactivity of siderophores produced by marine hetero-

Bouchalba, H., and A. L. Crumbliss (2002), Chemical aspects of sidero-

Bowie, A. R., E. P. Achterberg, P. N. Sedwick, S. Ussher, and P. J. Worsfold (2002), Real-time monitoring of picomolar concentrations of iron(II) in marine waters using automated flow injection-chemiluminescence instru-

Boyd, P. W., et al. (2004), The decline and fate of an iron-induced phyto-

Croot, P. L., and P. Laan (2002), Continuous shipboard determination of Fe(II) in polar waters using flow injection analysis with chemilumines-

Maldonado, M. T., and N. M. Price (2001), Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae), J. Phycol., 37, 298 – 309.

K. R. Arrigo, Department of Geophysics, Stanford University, Stanford, CA 94305, USA.

O. Aumont, Laboratoire d’Océanographie et de Climatologie: Expérimentation et Approches Numériques, Centre IRD de Bretagne, IPSL, F-29280 Plouzané, France.

L. Bopp and A. Tagliabue, Laboratoire des Sciences du Climat et de l’Environnement, IPSL, CEA, UVSQ Orme des Merisiers, CNRS, Bat 712, F-91198 Gif sur Yvette, France. (alessandro.tagliabue@lsce.ipsl.fr)