Design Solutions for Seasonal Water Scarcity in the Comarca Ngäbe-Buglé

Mujeres Fuertes Consultados

Michigan Technological University

iDesign Panama 2010

Jacquie Blom, Alye Hannum, Natalie Helms, Sara Maihofer, Beth Shears
Outline

- Introduction
- Background
- Site Assessment
- Design Alternatives and Analysis
- Cost Estimate and Construction Schedule
- Design Recommendations
Comarca Ngäbe-Buglélé

Erin Kelley

- University of Kentucky
 - Foreign Language and International Economics
- Peace Corps Volunteer
 - Agro-business
- Salto Dupí in the Comarca Ngäbe-Buglélé
- Counterpart: Alvaro Bejerano
Comarca Ngäbe-Buglé

Ngäbe-Buglé People

- Comarca: “reservation”
- Language: Ngäbere and Buglére
- Livelihood: Subsistence farmers, shop owners
- Income: $10/week
- Religion: Seventh-Day Adventist
- Crafts: Chacaras, Naguas
Farming on the Comarca

Quebrado Loro Rainfall

Rainfall, mm

- Average Rainfall
- Maximum Rainfall

Seasons
- Rainy: May – November
- Dry: December – April
- “Famine”: May – July

Farming adversities
- Poor soil
- Steep slopes
Farming on the Comarca

- OPAMO: Organization of Agricultural Producers with Organic Methods
 - mulch
 - compost
 - soil conservation plants
 - plants to slow runoff

- Design Needs
 - Rainwater Collection
 - Rainwater Storage
 - Irrigation
Designing for the Developing 80%

Considerations

- Technical Aspects
 - Construction skills
 - Material availability
 - Maintenance

- Social Aspects
 - Willingness to use the technology and show other farmers the technology

- Economical Aspects
 - Capital and financial management
 - Market opportunities for the produce and pay back time for the technology
Site Assessment

- GPS
 - Coordinates of property line
- Surveying
 - Elevations and distances of vegetable plots and property
Site Assessment

- Plant Identification
 - Photographs for guidebook
- Soil Investigation
 - Characteristics to estimate soil properties: cohesion and unit weight
Design Alternatives

- Dam river
- River water pumping
 - Electric pump
 - Treadle pump
 - Windmill pump
- Rainwater storage
 - Water bladder
 - 50-gallon polyethylene barrel
 - Ferrocement tank

Proposed Design

Developing 80% Considerations

- Economically feasible
- Materials available in Salto Dupí or San Felix
- Minimal technical training
- Adaptable for other farms
- New technology for the area – easily accepted
Proposed Design

- **Rainwater Collection and Storage System**
 - Zinc-coated roof
 - Bamboo gutters
 - 50-gallon polyethylene barrels

- **Drip Irrigation System**
 - Garden hose

- **Rice Terraces**
Proposed Design

- **Upper Garden Plot**
 - Zinc-Coated Roof
 - 50-gallon Polyethylene Barrels
 - Garden Terraces
 - Irrigation Hose
 - Bamboo Gutters
 - Bamboo Structure
Design Analysis

Rainwater Collection System

- Zinc roofing
- Bamboo gutters

![Diagram of rainwater collection system with zinc roofing and bamboo gutters]

Water Collected (Gallons)

Days

Number of Zinc Sheets
1 2 3 4 5 6
Design Analysis

Rainwater Storage System

- 50-gallon polyethylene barrels
- PVC connections
Design Analysis

Drip Irrigation System

- Experiment
 - Determined flow through emitters
 - Various elevation changes
Design Analysis

Drip Irrigation System

- EPA Net 2.0 Model
 - Flow: 0.026 GPM
 - Pressure: 2-4 psi
Design Analysis

Rice Terrace Water Budget

<table>
<thead>
<tr>
<th>Month</th>
<th>Irrigation Need (mm/month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>-116</td>
</tr>
<tr>
<td>June</td>
<td>34.0</td>
</tr>
<tr>
<td>July</td>
<td>-19.6</td>
</tr>
<tr>
<td>August</td>
<td>-186</td>
</tr>
<tr>
<td>September</td>
<td>-33.2</td>
</tr>
<tr>
<td>October</td>
<td>-236</td>
</tr>
</tbody>
</table>

www.images-photography-pictures.net/China_riceTerraces_terracotta_soldiers.htm
Design Analysis

Rice Terrace Slope Stability Analysis in SLIDE 5.0

![Graph showing safety factors and slope stability analysis in SLIDE 5.0]
Rice Terrace Dimensions

- Height: 2 ft
- Width: 3 ft
- Length: 24 ft
- Number of terraces: 8
- Construction Time: 16 days
Detailed Cost Estimate for Rainwater Collection, Storage and Distribution System

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc Roofing (3.5'x10' sheet)</td>
<td>2</td>
<td>$8.00</td>
<td>$16.00</td>
</tr>
<tr>
<td>Nails (box)</td>
<td>2</td>
<td>$2.30</td>
<td>$4.60</td>
</tr>
<tr>
<td>Rubber Sheeting (12"x36")</td>
<td>1</td>
<td>$17.50</td>
<td>$17.50</td>
</tr>
<tr>
<td>Barrels</td>
<td>7</td>
<td>$25.00</td>
<td>$175.00</td>
</tr>
<tr>
<td>PVC Pipe (1" diameter) (20 ft)</td>
<td>1</td>
<td>$3.50</td>
<td>$3.50</td>
</tr>
<tr>
<td>PVC Threaded Nipple (1" diameter)</td>
<td>12</td>
<td>$0.50</td>
<td>$6.00</td>
</tr>
<tr>
<td>PVC Valve (1" diameter)</td>
<td>2</td>
<td>$3.50</td>
<td>$7.00</td>
</tr>
<tr>
<td>Caulk (1 tube)</td>
<td>1</td>
<td>$4.00</td>
<td>$4.00</td>
</tr>
<tr>
<td>Garden Hose (75')</td>
<td>3</td>
<td>$17.50</td>
<td>$52.50</td>
</tr>
<tr>
<td>Hose connections</td>
<td>3</td>
<td>$1.00</td>
<td>$3.00</td>
</tr>
<tr>
<td>Hose caps</td>
<td>2</td>
<td>$1.00</td>
<td>$2.00</td>
</tr>
<tr>
<td>Transportation of Materials</td>
<td>-</td>
<td>$40.00</td>
<td>$40.00</td>
</tr>
<tr>
<td>Total Cost:</td>
<td></td>
<td>$331.10</td>
<td></td>
</tr>
</tbody>
</table>
Construction Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Prep</td>
<td>5</td>
</tr>
<tr>
<td>Material Acquisition</td>
<td>14</td>
</tr>
<tr>
<td>Roof and Gutter Construction</td>
<td>9</td>
</tr>
<tr>
<td>Storage System Construction</td>
<td>5</td>
</tr>
<tr>
<td>Irrigation System Construction</td>
<td>7</td>
</tr>
<tr>
<td>Early Finish</td>
<td>21</td>
</tr>
<tr>
<td>Late Finish</td>
<td>39</td>
</tr>
</tbody>
</table>
Recommendations

- Rainwater collection, storage, and irrigation system
 - Screen collected water before storing
 - Test irrigation system water flow at various elevation changes
 - Cover irrigation lines with mulch
- Maintenance
 - Clean gutters and screen
 - Clean out irrigation lines
 - Clean emitter holes
- Rice terraces
 - Place rocks at water spouts to prevent erosion
 - Plant vetiver to filter waste water
Next Steps

- Maintain communication with Peace Corps volunteer
 - Funding opportunities
 - Materials already obtained
 - Design questions and adaptations
- Follow up with Comarca farmers for design feedback
Acknowledgements

- Dr. David Watkins, *Advisor and Professor*
- Erin Kelley, *Peace Corps Panama Volunteer*
- Alvaro Bejerano, *OPAMO farmer*
- Dr. Barkdoll, *Michigan Tech Professor*
- Anthony Oxley, *Michigan Tech Soils GTA*
- Tyler Gage, *Michigan Tech Senior Design colleague*
- Mr. Mike Drewyor, *Advisor in Panama*
- Krissy Guzak, *Mentor in Panama*
<table>
<thead>
<tr>
<th>Photo Credits: Natalie Helms, Beth Shears, Sara Maihofer, Jacquie Blom, Alye Hannum</th>
</tr>
</thead>
</table>
References

