Investigation of Charcoal Production Methods

for Sajalices

THE MANGROVE CHARCOAL SUSTAINABILITY ENGINEERS FOR SAJALICES

Wilbel Brewer (wjbrewer@mtu.edu) Aaron Cypher (ajcypher@mtu.edu) Jonathan Gress (jvgress@mtu.edu) Samantha Neirby (srneirby@mtu.edu) Lauren Petitpren (lkpetitp@mtu.edu)

IDESIGN

Michigan Technological University December 9, 2010

Outline

- □ Introduction
- Methods and Procedures
- □ Analysis and Design Options
- MCSES Recommended Design
- □ Recommendations

Introduction

- Sajalices & El Espavé, Panama
- □ IDesign- August 2010
- D80 Conference
- Charcoal Importance
- Organizations
 - DEUMSA
 - □ ANAM
 - **U**N

autoridad nacional del ambiente

Sajalices

Panamá

Methods and Procedures

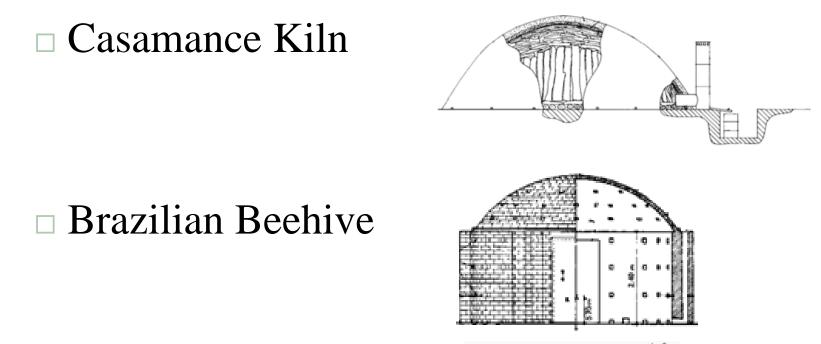
- Interviewed local workers
 - Charcoal production methods
 - Improvements desired
- □ Collected data
 - Dimensions
 - Temperatures
 - Smoke density

Methods and Procedures

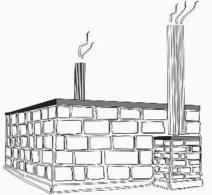
- Researched mangrove forest
 important ecosystem
 composition of wood
 - ABC Harvesting Method
 A: Mother Trees
 - **B**: Immature Trees
 - C: Mature/Sickly Trees

Methods and Procedures

Traditional Method

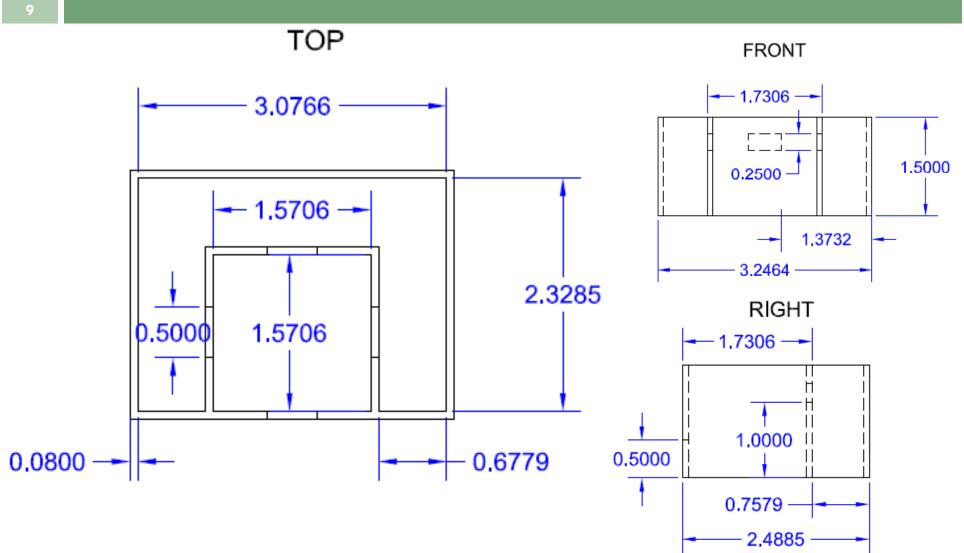


Japanese Oven (personal)

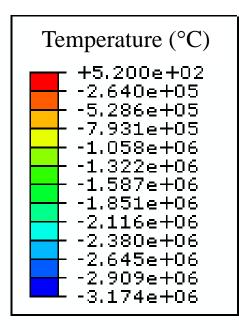


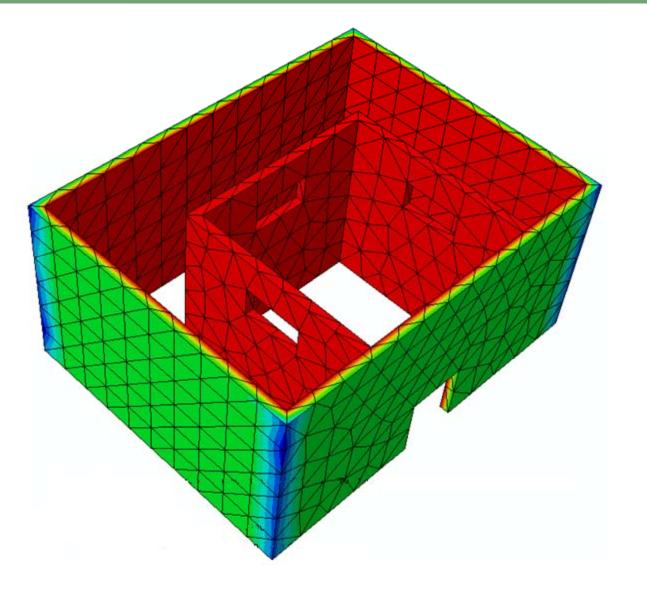
Analysis and Design Options

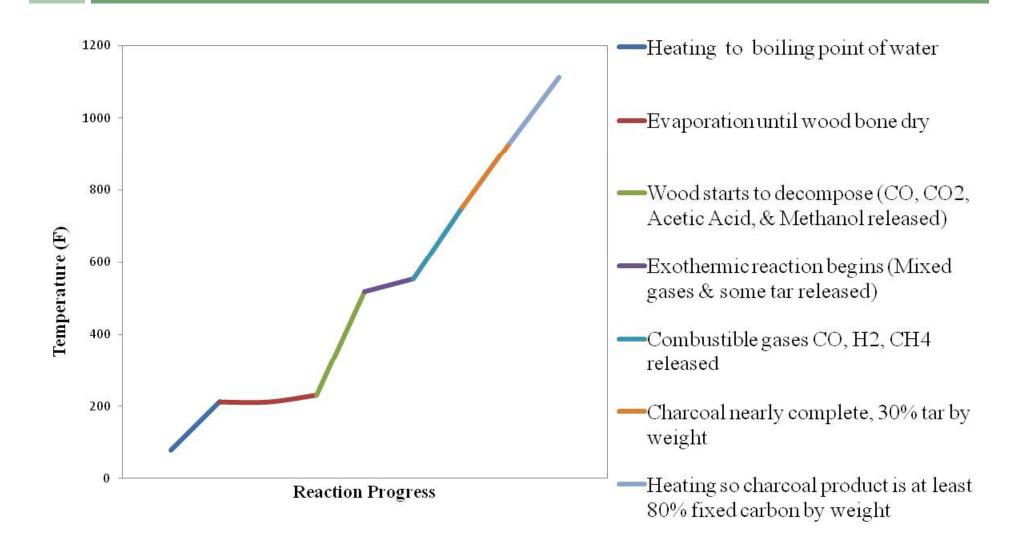
Retort Kiln


Criteria for Design

Design a system For the commercial production of charcoal □ Criteria Durable Protect and maintain the mangroves Optimize the design ■low cost and high efficiency Reduce harmful emissions Protect health of workers




MCSES Recommended Design


Unit: METERS

MCSES Design

Pyrolysis (Charcoal Production Process)

Construction Schedule

12

Construction Schedule							
Activity	Description	Details	Duration (hours)	Work Days Required	Prerequisite Activities		
1	Prepare oven location	Level the ground, remove rocks, roots, trees, etc., compact earth to keep bricks from sinking	16	2	0		
2	Collect materials	Order bricks, sheet metal, metal piping, mortar, grating sheet, fume hood (distillation device)	168	7	0		
3	Lay outline of oven	Ensure correct sizing and brick placement for firebox and pyrolysis chamber	8	1	1, 2		
4	Build oven walls	Ensure correct heights	32	4	3		
5	Add grating level	Keeps wood off ground, giving space for ash to fall	1	0.125	4		
6	Attach chimneys	Allows for ventilation of gases	3	0.125	4		
7	Begin charcoal process	-	_	_	5, 6		
		Total:	228 hours	14.25 days			

Cost Analysis

Construction Cost

	Items	Cost		
	Fire brick	\$1,466.00		
	Metal plate	\$600.00		
	Screen	\$208.00		
Materials	Bamboo	\$1.00		
	Chimney tube	\$3.00		
	Bell cone	\$96.00		
	Wire	\$1.00		
	Total:	\$2,375.00		
	Shovels	\$12.00		
Tools	Measuring tape	\$4.00		
10015	Bucket/ wheelbarrow	\$40.00		
	Trowels & wooden	\$6.00		
	Total:	\$61.00		
	TOTAL COST.	\$2 426 00		

TOTAL COST:

\$2,436.00

Cost Analysis

Profit Analysis

	Components	Amount	
	Fuel wood	\$0.00	
Cost	Labor	\$0.00	
(\$/c-year)	Boat & tool motor fuel	\$5,286.00	
	Transport to market	\$1,000.00	
	Total (\$/c-year):	\$6,286.00	
	Bags produced per batch	40	
	Batch time (hrs)	42	
	Service factor	0.8	
Revenue	Operation (wks)	41.6	
	Bags produced per year	6656	
	Charcoal per yr (lb/c-year)	232960	
	Cost per bag (\$/bag)	2.5	
	Total (\$/c-year):	\$16,640.00	
	Contingency costs (at 10%)	\$629.00	
	TOTAL PROFIT:	\$9,725.00	

Conclusions

Criteria

- 1. System for commercial production of charcoal
- 2. Durable
- 3. Low cost
- 4. High efficiency
- 5. Reduce harmful emissions
- 6. Protect health of workers
- 1. Protect and maintain the mangroves

Solution

- ✓ MCSES Design
- ✓ Fire bricks, square design, easily repairable
- ✓ \$2,436 (3 mo. payback period)
- ✓ 232960 lbs per year
- ✓ Recycle process
- ✓ Chimney to direct smoke, no exposed flame
- ✓ Continue ABC harvesting and replant

Recommendations

- Shelter built to protect design
- Clean ash from chambers
- Build design in ground to help insulate
- Dry mangrove wood to shorten batch time
- Perform experimental trials of the design

17

Disclaimer

The calculations involved were done in an idealistic manner and certain information was substituted based off availability.

References

18

- "Thermal Conductivity." *Thermal Conductivity of Some Common Materials*. The Engineering ToolBox. Web. 19 Nov. 2010. http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html."
 Geankoplis, Christie J. "Chapter 5.3D Unsteady-State Conduction in a Long Cylinder." *Transport Processes and Separation Process Principles: (includes Unit Operations)*. 4th ed. Upper Saddle River, NJ: Prentice Hall Professional Technical Reference, 2003. 369-70. Print.
 Bienvenidos a La Web De La ANAM. Web. 25 Aug. 2010. ">http://www.anam.gob.pa/>.
- "Casamance Kiln | BioEnergy Lists: BioChar (or Terra Preta)." *BioEnergy Lists: BioChar (or Terra Preta) | Information on the Intentional Use of BioChar (charcoal from Biomass) to Improve Soils.* 2009. Web. 25 Aug. 2010.
 ">http://terrapreta.bioenergylists.org/casamancekiln>.
- Goyal, Hari. "Properties of Wood (for Papermaking)." *Pulp & Paper Resources on the Web*. Web. 23 Oct. 2010. http://www.paperonweb.com/wood.htm>.
- Lozano, Lourdes E. Manglares Para La Vida. Print.
- Mitchell, R. L., and Geo J. Ritter. "Composition of Hemicellulose Isolated from Maple Wood." *Journal of American Chemical Society* 62 (1940): 1958-959. Web. 23 Oct. 2010. http://http://pubs.acs.org/doi/pdf/10.1021/ja01865a016>.
- Shimada. "Hacia Una Cultura Ambientalmente Sostenible En El Arco Seco." ANAM, El Cacao. Aug. 2010. Lecture.
- Shimada. "Produccion De Carbon Y Vinagre De Carbon." ANAM, El Cacao. Aug. 2010. Lecture.
- Table of Contents." FAO: FAO Home. Web. 25 Aug. 2010. http://www.fao.org/docrep/x5328e/x5328e00.htm.
- Vega, Luis, and Kenichi Takano. *Produccion De Carbon Y Vinagre De Carbon*. La Chorrera, 2005. Print.
- "Welcome to the United Nations." Welcome to the United Nations: It's Your World. 2010. Web. 25 Aug. 2010. < http://www.un.org/en/>.
- Wilkinson, Martin A. "Thermal Properties of Building Materials." *Student Subdomain for University of Bath.* University of Bath. Web. 23
 Oct. 2010. http://people.bath.ac.uk/absmaw/BEnv1/BE1.htm>.

Acknowledgements

\square ANAM:

Lic. Cesar Paniagua, Octauio Dela Cruzs, Tadao Shimada

DEUMSA:

 Alcibiades Rodriguez, Amado, Amaria Geosta, Eraclio, Felipa Guardia, Juan, Mara Barria, Na'Akim, Yamisel Medina

□ **UN:**

■ Armando Diez, Jose Manuel Porez, Lourdes Lozano

\square MTU:

 Dr. Blair Orr, Dr. Charles Margraves, Dr. David Shonnard, Dr. David Watkins, Kelli Whelan, Dr. Michael Mullins, Mr. Mike Drewyor, Dr. Thomas Clancey, Dr. Tony Rogers