Embera Puru Water Supply

To improve quality of life: one community, one design, and one drop of water at a time.

Michigan Tech

Team introductions

Victoria Quinde

ME Student Project Manager

Ross Hogan

ME Student Applications Engineer

Kelsey Fournier

CEE Student Technical Writer

- Project Introduction
- Site Assessment Phase
- Design Phase
- Planning Phase
- Challenges
- Looking Forward
- Questions

Introduction - Community Background

- Darien Province, Panama
- Located along Pan-American Highway
- Indigenous Community
 - Reservation Area: ~ 32 mi² of land
 - Population: 318 people

Arctic Ocean

Portuga

Morocco

Norwegian Sea

Greenland Iceland

Introduction - Problem Definition

- 81% of Indigenous Territories are Extreme Poverty Level
- End of Functioning System
 - Wet Season: Water 1-2 days/week
 - Dry Season: No water!
- Population Growth
- Increase in Demand

Spring defined as potential source: "Source 1"

Introduction - Project Background

 <u>Goal</u>: Provide potable water to meet water demand of 20-year projected population

Project Stakeholders:

- Community Members
- Footprint Possibilities Panama
- Global Brigades Panama

• Access to water: 74 faucets

- 3 community buildings
- 1 school (5 taps)
- 63 homes (Average 4 people per house)

Introduction - Site Overview

Site Assessment Phase

Existing Conditions

- Fundacion San Jose de las Canasas (Foundation) System
 - Supplied by Rio Sabana (~ 50 km away)
 - Well-built and Established System (1994)
 - Supplies 13 communities
 - Embera Puru is at the end
 - Problem: System has been outgrown
- TRUNZ Ultrafiltration System
 - Supplied by remote spring source
 - Vandalized and abandoned 7 years ago
 - Problem: Inappropriate Technology

Data Collection - Topographic Data

Data Collection

- GPS Points
- Nikon RangeFinder
- Compass Bearing

Data Collection - Soli Classification

<u>Tests:</u>

- Settlement test on level surface: 1 minute, 1 hour and 24 hours
- Turbidity Test: Additional 4 days undisturbed
- Knife Test

Results:

• High Silt and Clay Content

Sand

17%

Percentage

Silt

40%

Inconclusive

Water Solutions, Inc.

Clav

43%

	State 1	
		C.A.
Standor .		Photographs by Author

Location

Spring Source

Tank Option #1

Data Collection - Water Quality

<u>Test:</u> Incubation on 3M Petrifilm Plates Coliform

<u>Results:</u>

- *Tap (existing Foundation system):* 0 coliform count, no settled solids
- Spring Source: coliform count of 12 per square or 240 total count, minimal settled solids

Verification:

• Consistent with Laboratory Observations

Results of Spring Source

Design Phase

Design Parameters - Criteria

- Appropriate Technology
- Mitigate Safety and Environmental Hazards
- Capacity Requirements
 - Current Design Population: 305 people (central community)
 - 15.85 gallons (60 liters)/person/day
 - 4% Population Growth Factor
 - 20 year projection
- Metered Distribution System
- Protective Barriers (i.e. fences, locks, etc.)

Design Parameters - Constraints

- Viability of Spring Source
 - Spring Flow Rate
- Electrical Power Supply
 - Pumps
 - Control System

Design Parameters - Assumptions

• Spring Source

- Enough water to meet design criteria
- Flow Rate: Minimum 7.9 GPM
- Minimum Water Output: 10,600 gallons per day
- Household Height
 - 7-ft above ground elevation

Example of Elevated Houses

• **<u>Projected Population:</u>** 670 people in 20 years (4% growth from current)

- 7.9 gpm needed to maintain storage tank level
- 10,600 gallons total usage

System Analysis - EPANet Model

• Design:

- Tank Capacity
- Pipe Sizing
- Pump Locations

<u>Analyses:</u>

- Head
- Pressure

EPANet Model Showing Node Elevations and Pipe Diameters

Design Overview: Emberá Puru

Design Components:

- Water Collection Structure
- Pump Stations
- Electrical Supply
- River Crossing
- Water Storage Tank
- Water Treatment
- Supply and Distribution Pipelines

Water Collection Structure

- Catchment: Collect water from Spring
- <u>Wet Well:</u> Provide buffer for Pumping

Water Collection Structure and Pump House from the West

• *Feeder Pipe* with Roughing Filter

2'x2' Lockable Hatch

Water Collection Structure

<u>Control Accessories:</u>

- Clean-out and Overflow Pipeline
- Vent Pipes
- Shut-off Valves
- <u>Hatch:</u> Lockable access for Maintenance

Pump & Pump Station

Pump at Source:

- *Purpose:* Deliver water to tank
- Centrifugal Pump
- One-stage Pumping
- Single-phase

Pump at Water Tank:

- *Purpose:* Deliver water to taps
- Booster Pump
- Maintains 20-30psi

Recommended Booster Pump

21

Electrical Supply & Controls

- 9-panel Solar Array: Power Supply at Spring
- Pad-mounted Control Box: Electrical Controls
 - Required Voltage: 115 V 0
 - Minimum Required Amperage (Spring): 15 A 0
 - Minimum Required Amperage (Tank): 20A 0

Recommended Solar Array with Battery Pack

Recommended Pump Control Box

Suspension Bridge Design:

Support Supply Line and Electrical Conduit

• Pipe Span: 36-ft

Fixtures - Tower and Anchor:

- Tower to Tower Span: 45-ft
- Tower Material: Steel Pipe Column
- Anchor Material: Reinforced Concrete
- Galvanized Vinyl Coated Steel Wire

Conceptual Design for Pipe Bridge Across a Small River

River Crossing

Victoria

Water Storage Tank and Treatment

- Capacity: 5,400 gallons
- **Foundation:** Earth-build to supply 3' head to pump
- <u>Hatch:</u> Lockable access for Maintenance

Water Storage Tank and Treatment

- <u>Treatment:</u> Chlorine Injection
- Required Contact Time: 11 min

Recommended Injection System

Storage Tank Site from South

SDR 26 PVC Pipe 3" Pipe Length: 1634-ft

• Burial Depth: 2-ft

Supply Pipeline

Distribution Pipeline

SDR 26 PVC Pipe:

- *Trunk:* 2" Pipe
- Branches: 1" Pipe
- Spigot: ½"

Distribution System Layout of the Central Community (3D Model).

Shut off Valves: Central and Critical Locations

System Valves

- <u>Cleanout Valves</u>: Local Low Elevations
- <u>Air Release Valves:</u> Local High Elevations

Planning Phase

Estimated Required Budget

• Full Labor: \$235,000

Cost Estimate

• Reduced Labor: \$69,000

Task Name	Duration of Task
Project Start	0 days
Order Materials	2.25 days
Remove Ultrafiltration	1 day
Pipe Installation	136.5 days
Piping Complete	0 days
Build Water Collection Structure	38 days
Build Water Storage Structure	126 days
Storage Tank Complete	0 days
Install Fencing	8.25 days
Install Pump and Solar Array	2.25 days
Install Chlorination System	1.25 days
Electrical Work	8 days
Pre-Start Tasks	6.75 days
Project Complete	0 days
Project Total Duration	208 days

Construction Schedule extracted from Gantt Chart

Duration: 7 months

Challenges

- Communication Barriers
 - Language Barrier with Community
 - Outstanding Action Items (4 months overdue)
- Unique Design and Conditions
 - Unknown Flow Rate
 - 2 Pumps
- Timeline & Alternatives

Looking Forward

Looking Forward

- Community Involvement
- Educating the Community
 - Rainwater vs. Treated Water
 - Importance of System Maintenance
 - Awareness of Water Scarcity
 - Disposal of Wastewater
- Operation and Maintenance
- Outstanding Action Items

Acknowledgements

Advisors:

- Dr. Watkins, PE
- Mike Drewyor, PE & PS

Clients:

Michigan Tech Faculty: Dr. Ahlborn, Dr. Bulleit, Dr. Swartz, and Dr. Vitton

Field Advisor:

Kiko de Melo e Silva

Questions?

Thank You For Your Attention!

