CERRO ORTIGA II

Pluma Inc.
Claire Bradford
Hailey Goupille
Ruth Oppliger
OUTLINE

- Pluma Inc. background
- Problem description
- Gravity-fed water system background
- Community background
- Final design
- Cost estimate
- Construction schedule
- Conclusion
- Questions
MISSION STATEMENT

To design a water distribution system to meet the needs of the Cerro Ortiga II community members and provide knowledge of engineering water systems to assist the community in implementing the project. Pluma Inc. designs for the sustainable, economical, social, and the health and safety needs of the Cerro Ortiga II community.
PROBLEM DESCRIPTION

- Design gravity-fed water system
- Provide clean water for:
 - 78 people
 - 13 homes
- Redesign previous infrastructure
- Maximum budget: $8,000
COMMUNITY BACKGROUND

- Ngöbe-Buglé Comarca
- Population Size: 600 citizens
- Area: 15-20 mi²
- Terrain
 - Steep Hills
 - Trail Condition
 - Heavy Rain
- Remote Location
EDUCATION

- Points System
- Cost of Attendance: $5/year
- Classroom Environment
- On Site: K-9th
- Off Site: 10th-12th
- Monday-Thursday: 8am-12pm
WORK LIFE

- Subsistence agriculture
 - Corn, cacao, yucca, plantains, coffee, bananas, rice
- Hand-made items
- Stores on site
- Salary jobs
TRADITION AND COMMUNITY LIFE

- Men and Women are equal
- Child-bearing begins at a young age
- Unions vs. Marriage
- Heavily hunted area
- No running water
- House Structure
 - Thatched roof
 - Dirt floors
GOVERNMENT AID

- $120/month per family
- $80/year for school supplies
- Free health clinic
 - Every 3 months
 - Dental, check-ups, testing, vaccinations
- Ministry of Health (MINSA)
 - Previous water system
CHALLENGES

- Lack of structure and maintenance on water system
- Limited access to materials
- High cost for community
- Lack of knowledge of water system
- Interference from community members
- Community lacks a sense of ownership
SURVEY TECHNIQUES
WATER QUALITY

<table>
<thead>
<tr>
<th>Quality Test</th>
<th>Number of Coliforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Avg.</td>
<td>11.6</td>
</tr>
</tbody>
</table>
FLOW RATE AND DEMAND

- Source: Ground spring
- Flow Rate: 1.13 gpm
- Total: 1,600 gallons/day
- Allowable water usage: 20 gallons/person/day
- World Health Organization
 - Minimum of 5 gallons/person/day for Basic Water Access
OLD SYSTEM

Spring Box

Holding Tank

Chlorinator
Final Design
SPRING BOX

Old Infrastructure

New Design

Manhole 20"
Overflow Pipe 1"
Clean-out Valve 1"
Outlet 1.5"
RAINWATER CATCHMENT

- System for laundry area
- Area will be dammed
- Roof area: 25 ft²
- Captures an average of 170 gallons/month
- Materials:
 - Corrugated PVC
 - 4 x 4 Wooden Posts
CHLORINATOR

- Recommend: Insert 3 tablets every 1-2 weeks

- Tablets:
 - 200 grams
 - 3 inch in diameter
 - 70-90% available free chlorine

- Tablet dissolution rate: 5-7 days
 - Study flowrate: 12 gpm
 - Cerro Ortiga flowrate: 1.13 gpm

- Cost: $25
 - 15 tablets/visit
HOLDING TANK

Old Infrastructure
- 4,500 gallon

New Design
- 2,000 gallons
PIPELINE

- Total Pipeline: 8,180 ft (1.5 miles)
- Main Line: 2,500 ft
- Pipe Diameter
 - 1.5 inch on main line
 - 1 inch on branches
- Pipe material is SDR 26
Air blockages can occur within a gravity fed water system
- Changes in elevation
- High pressures
- Air valve will be placed on Louisa’s branch
- The valve is closed when the system is running normally

http://plastomatic.com/arv.html
PRESSURE REDUCING VALVE/PRESSURE BREAK TANK

- High pressures occur at the lower end of the system
 - Overall elevation change of 375 feet
 - Pressures between 100 and 150 psi
- Pressure release valve
 - Reduces pressure to 25 to 75 psi
- Pressure break tank
 - Reduces pressure to atmospheric

[Image of pressure reducing valve and pressure break tank]

http://www.homedepot.com/p/Watts-3-4-in-Brass-FPT-x-FPT-Pressure-Reducing-Valve-3-4-LF25AUB-Z3/202922385
PREVIOUS PIPE CROSSING
<table>
<thead>
<tr>
<th>Crossing</th>
<th>Length of Span (ft)</th>
<th>Total Tension (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38</td>
<td>395</td>
</tr>
<tr>
<td>2</td>
<td>83</td>
<td>985</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>233</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>322</td>
</tr>
</tbody>
</table>
TAP STANDS AND SHUT OFF VALVES

- 13 tap stands
- 4 x 4 wooden post
- Hose clamps
- Globe valves
- 5 shut off valves
- Used for maintenance
<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline</td>
<td>$3,500</td>
</tr>
<tr>
<td>Pressure Reducing Valve</td>
<td>$180</td>
</tr>
<tr>
<td>Air Valve</td>
<td>$30</td>
</tr>
<tr>
<td>Tanks</td>
<td>$1,800</td>
</tr>
<tr>
<td>Pipe Crossings</td>
<td>$700</td>
</tr>
<tr>
<td>Chlorinator</td>
<td>$25</td>
</tr>
<tr>
<td>Rainwater Catchment</td>
<td>$65</td>
</tr>
<tr>
<td>Taps</td>
<td>$100</td>
</tr>
<tr>
<td>Transportation</td>
<td>$400</td>
</tr>
<tr>
<td>Equipment</td>
<td>$400</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$7,200</td>
</tr>
</tbody>
</table>
CONSTRUCTION SCHEDULE

- **Start date:** August 1, 2017
- **End date:** November 1, 2017
- Spring box: 7 days
- Holding tank: 7 days
- Pressure reducing valve/Pressure break tank: 1-6 days
- Pipeline: 41 days
- Laundry area: 6 days
CONCLUSION

- Next Steps:
 - Apply for grant
 - Transport materials
 - Begin construction
 - Continual maintenance

- Recommendations
 - Formal water committee
 - Monthly meetings
 - Delegate maintenance
Questions?