#### MICRO-HYDROPOWER

MAJÉ CHIMÁN, PANAMA



Michigan Technological University

Civil & Environmental Engineering

December 11th, 2012

Tyler Losinski
Christine Matlock
Katie Price
Andrea Walvatne

### OUTLINE

- Assessment Trip
- Objectives and Constraints
- Design Components
- Conclusions
- Questions



Taken by J. Cole







# **ASSESSMENT TRIP**



Picture by Google Maps





### THE COMMUNITY

- Wounan Tribe
- Community Structure
- Past Projects
- Economy
- Education



Taken by J. Cole



Taken by J. Cole



Taken by J. Cole





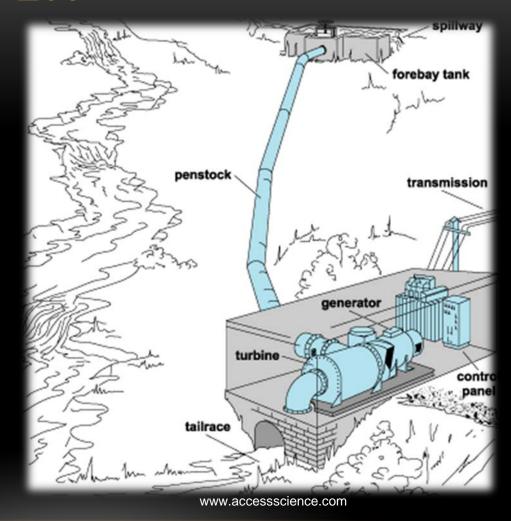


### **EXISTING SYSTEM**

- 110 kW Diesel Generator
- 114 Houses
- Transportation of Diesel Fuel






Taken by J. Cole





### **HYDROPOWER**

- Inlet
- Forebay
- Penstock
- Turbine
- Generator
- Transmission









# DATA COLLECTION

Salto Falls

Chorro Falls



Taken by Ty Losinski



Taken by Community Member





### DATA COLLECTION

- Velocity Measurements
- Cross-Sectional River Data
- Abney Level Readings
- GPS Coordinates
- Community Surveys



Taken by Kelli Whelan





### PROPOSED SITE

90 Feet in Height

7 Miles from Maje

• Flow Rate of 35 ft<sup>3</sup>/sec

- 103 kW Calculated in Panama
  - Power=Flow\*Head\*Efficiency



Taken by J. Cole







### DESIGN OBJECTIVES

| Objective Name           | Priority Rating | Method of Measurement                 | Objective<br>Direction | Target                            |
|--------------------------|-----------------|---------------------------------------|------------------------|-----------------------------------|
| System Cost              | High            | Total System Cost                     | Minimize               | \$150,000                         |
| Ease of Installation     | Low             | Cost of Professional Labor            | Minimize               | \$15,000                          |
| Maintenance              | Medium          | Cost and Time                         | Minimize               | 10% of System<br>Cost             |
| Environmental<br>Impacts | Low             | Turbidity Measurements Down<br>Stream | Minimize               | 10% Increase of Current Turbidity |
| Power Generation         | High            | Available Watts in<br>Community       | Maximize               | 100 kW                            |



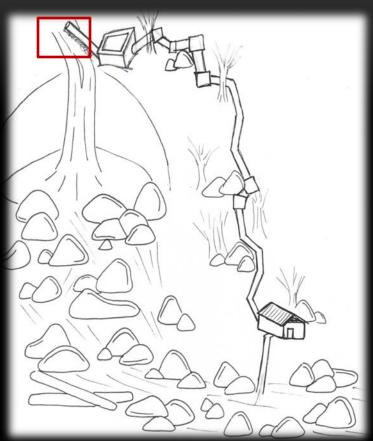


# DESIGN CONSTRAINTS



| Constraint                                            | Method of Measurement                              | Limit         |
|-------------------------------------------------------|----------------------------------------------------|---------------|
| Safety                                                | Number of Injuries/Deaths                          | 0             |
| Available Head  Surveying and Head Loss  Calculations |                                                    | 90 Feet       |
| Water                                                 | Measure the Zapatero River<br>Flow Rate            | 35 cfs        |
| Location                                              | Distance From Community                            | 7 Miles       |
| Transportation<br>Timeframe                           | Time in which materials can be transported to site | 3 Months/year |





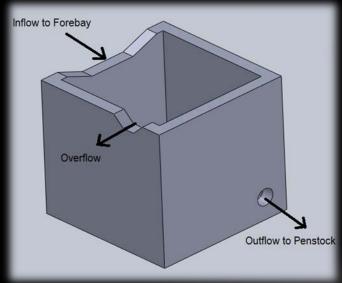

### **INLET STRUCTURE**

- Diverts 17.5 ft<sup>3</sup>/sec
- Rock Gabion

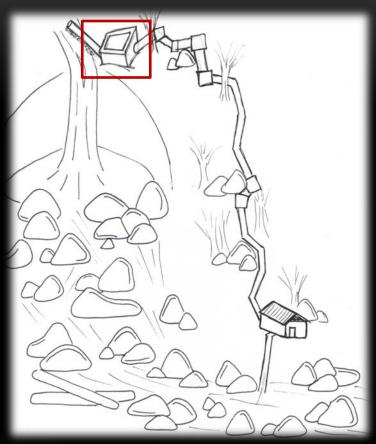


www.nirmaljoshi.wordpress.com




Created by Andrea Walvatne






### FOREBAY DESIGN

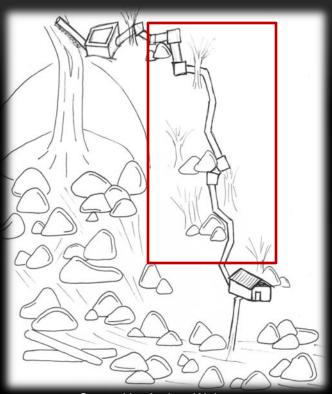
- Regulates Flow
- Concrete Structure
  - 12 x 12 x 12 feet
- Overflow Channel



Created by Christine Matlock



Created by Andrea Walvatne






### PENSTOCK

- PVC 18 Inch Diameter
  - o 670 Feet Long
- Headlosses
- Thrust Blocks and Anchoring





Created by Andrea Walvatne





### HOUSING STRUCTURE

- Location
- Materials
- Tail Race



Taken by J. Cole



Created by Andrea Walvatne




Created by Katie Price





#### TURBINE AND GENERATOR

- Cross Flow Turbine
  - 32 Inches in Diameter
- Gearing System
- Synchronous Generator
  - 78 kilowatts

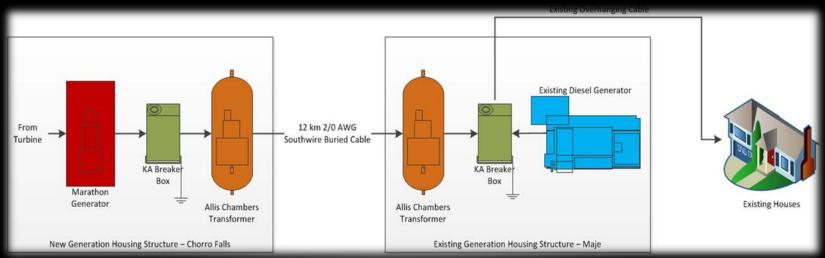


www.members.tripod.com



www.canyonhydro.com






### POWER TRANSMISSION

- Transformer
- Buried Cable
- Emergency Switch



www.electrical-engineering-portal.com



Created By Ty Losinski





### **OVERALL COST ESTIMATE**

| Category           | Total Cost        |
|--------------------|-------------------|
| Mobilization       | 7,600             |
| Inlet/Forebay      | 2,000             |
| Penstock           | 37,200            |
| Housing            | 3,900             |
| Generator /Turbine | 276,800           |
| Power Distribution | 96,700            |
| Total Cost         | \$ 445,400        |
| Including 5% tax   | \$ <b>467,700</b> |





# CONSTRUCTION

- Course of 2 Year Period
- Labor
- Environmental Impacts



Taken by J. Cole





#### ALTERNATIVES

- Diesel Generator
  - Continuous Fuel Cost
  - \$127,000/year
- Solar Power
  - Insufficient Power
  - \$171,000
- Connect to Existing Grid
  - Unknown Usage Fees
  - \$192,000

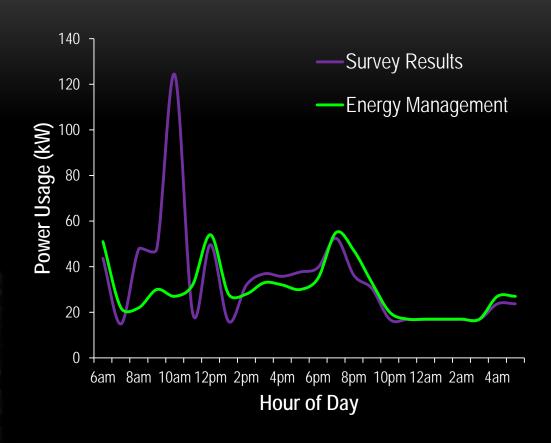


Taken by J. Cole



Taken by J. Cole






#### **ENERGY SAVINGS**

- Usage Schedules
- Laundromat
- Employing Batteries
- Prioritize Power



Taken by J. Cole







#### **SOCIAL IMPACTS**

- Life Style Change
  - Daily Chores
  - Education
  - Healthcare
- Eco-Tourism
- Cultural Shift



Taken by J. Cole



Taken by J. Cole





### **FEASIBILITY**

Outside Funding Source

Professional Consultant

Maintenance Capacity



Taken by J. Cole





#### FINAL RECOMMENDATIONS

"Micro-hydropower is a renewable and sustainable option but also an expensive power source."

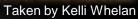








### ACKNOWLEDGEMENTS


- Dr. David Watkins
- Michael Drewyor, P.E., P.S.
- John Lukowski
- Alan Foster
- Larry Belkin
- Kelli Whelan
- J. Cole





# QUESTIONS?







