

Water Distribution System – Hato Pilón, Panama

Angella Mickowski, amickows@mtu.edu Rebecca Bender, rmbender@mtu.edu Cheriese Radionoff, cnradion@mtu.edu Kelsey Maijala, kbmaijal@mtu.edu

Outline

- Motivation
- Community background
- Data collection and analysis
- Cost estimate
- Environmental Impact Assessment
- Conclusion
- Works cited

Photo by DesignJane

Motivation

- We are students looking for practice.
- We are professionals with useful skills.
- Clean water is considered by many to be a human right, and we have an opportunity to promote that right.

Community Background

- Political center of the Hato Pilón region
- Education up to the eighth grade level
- Artisan crafts
- Subsistence farming: beans, maize, rice
- Three months of dry season
- Four basic neighborhoods, one with running water

Photos by Team Hard Body

Data Collection

- Water quality tests
- Flow estimates
- Topographical land surveying
- Initial Constraints
 - Population and water use data

Visual Observations

- Community layouts
 - Four communities
 - Important buildings
 - Paths and terrain
- Basic organization
 - Municipal center
 - Committee system
- Examination of existing system in Hato Pilón Abajo
 - Installed five years ago by the municipal government

Photos By: Team Hard Body

Demographics and Current Use

Population: 256 people

- Average size: 6-9 people
- 47 household requested taps

Current Use

- 3.5 gallons per person per day
- Design goal: 20 gallons per person per day

Current water sources

- Some rainwater catchment
- River water for household tasks and hygiene
- Some walk up to 20 min for clean water

Photos by Team Hard Body

Proposed Spring Source Water Quality

- Good water quality
 - 0 E. Coli
 - 22 CFU / 100 mL of total coliform counts
 - 20 CFU / 100 mL aerobic bacteria
 - Turbidity ~ I NTU
- Sufficient water quantity
 - Estimated flow rate 24 gal/min
 - Volumetric flow exceeds estimated water consumption

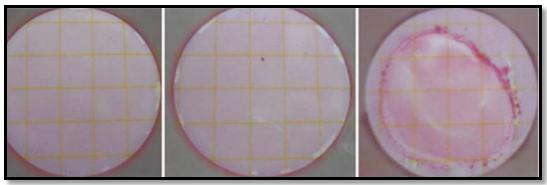
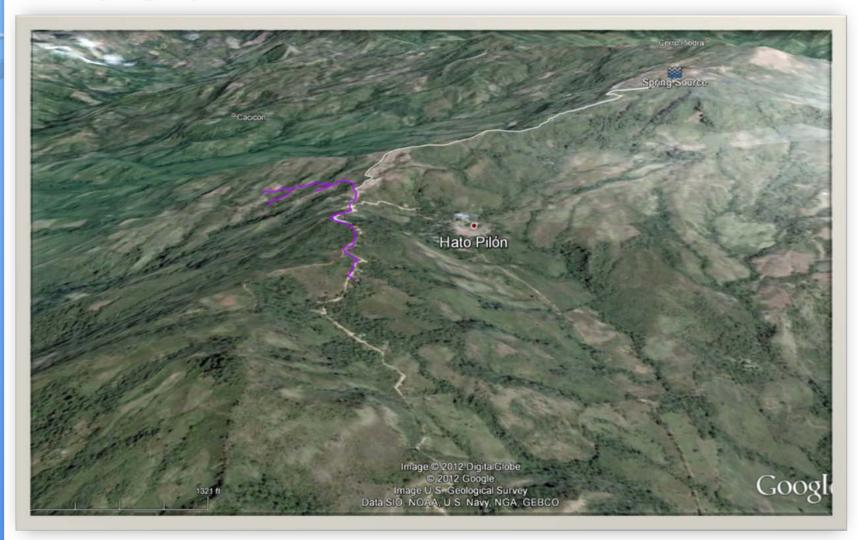
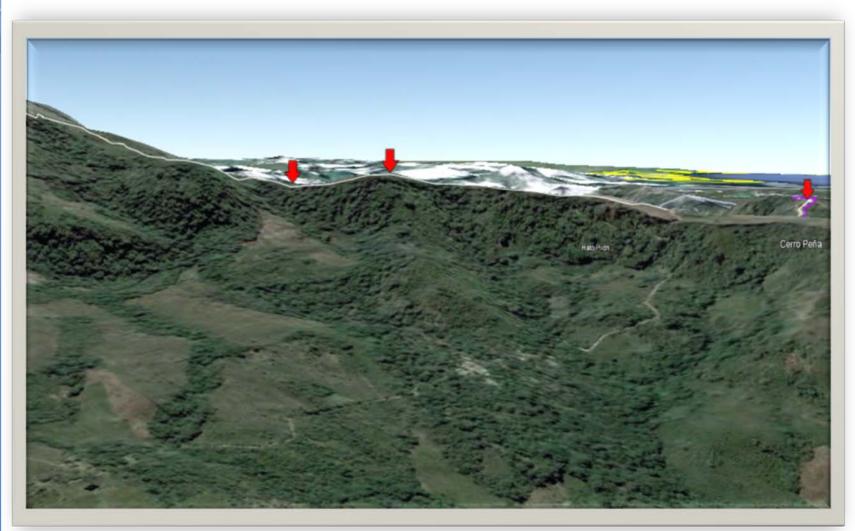



Photo by Team Hard Body

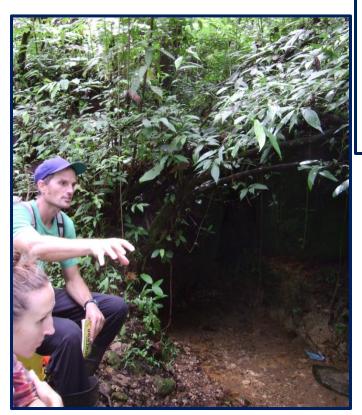
Surveying Topographical Overview

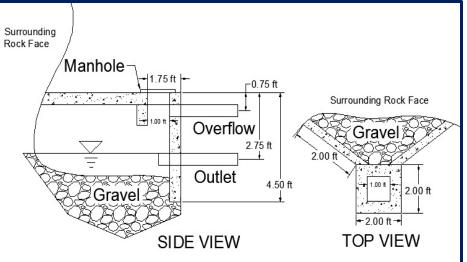
Hato Pilón Arriba

Image courtesy of Google Earth Pro


Cerro Peña

Initial Observations

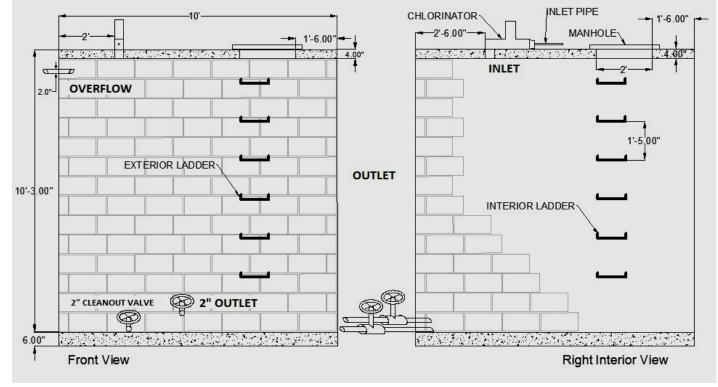

• Highs and lows not ideal for a gravity-fed system



Water Collection

• Spring Box: protects water seeping from ground surface

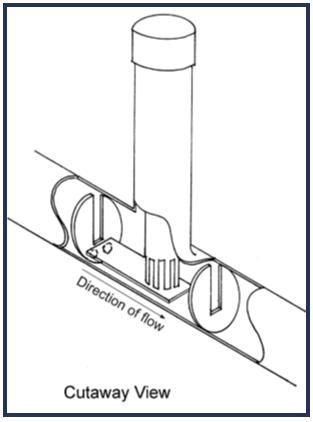
Created by Rebecca Bender


Photo by Team Hard Body

Water Storage

• Storage Tank: holds enough water to meet

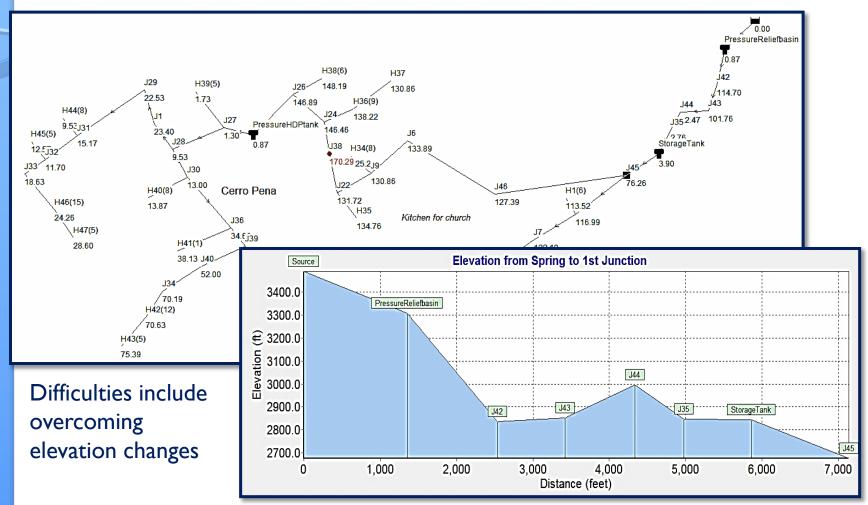
pressure and supply needs for one day


Created by Rebecca Bender

Water Treatment

- In-line chlorinator
- Less than \$100

Design and photos courtesy of Compatible Technology International


Why Chlorine?

- Potent Germicide
- Taste and Odor Control
- Biological Growth Control
- Chemical Control

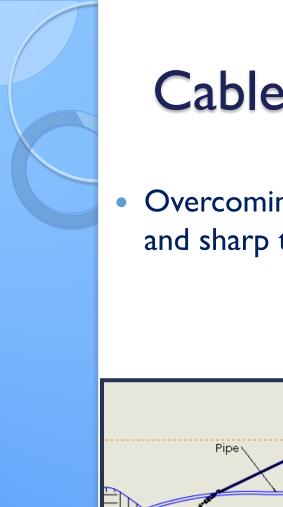
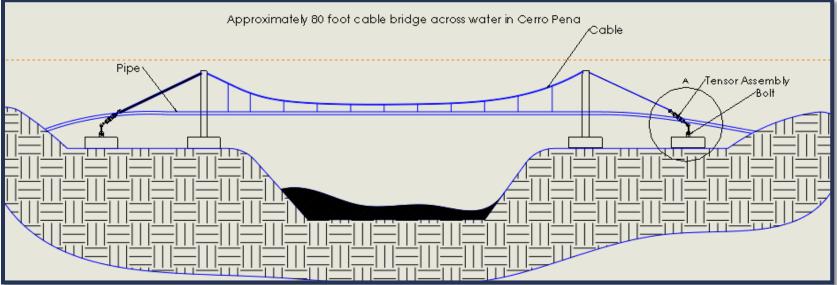


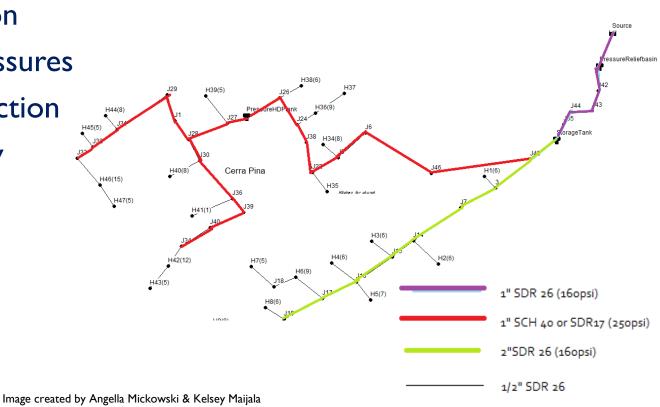
Photo courtesy of: http://www.honyam-chemical.com

EPANET Hydrology Model


Images from EPANET model developed by Angella Mickowski

Cable Bridge Assembly

 Overcoming a steep ravine and sharp turn along road



Created by Angella Mickowski

Pipeline recommendations

- Distribution from spring source to homes
- Elevation challenges
- Route to be followed
- Protection
- High pressures
- Pipe selection
- Assembly

Water Pressure Relief

Break Pressure Tank: Returns the system to atmospheric pressure

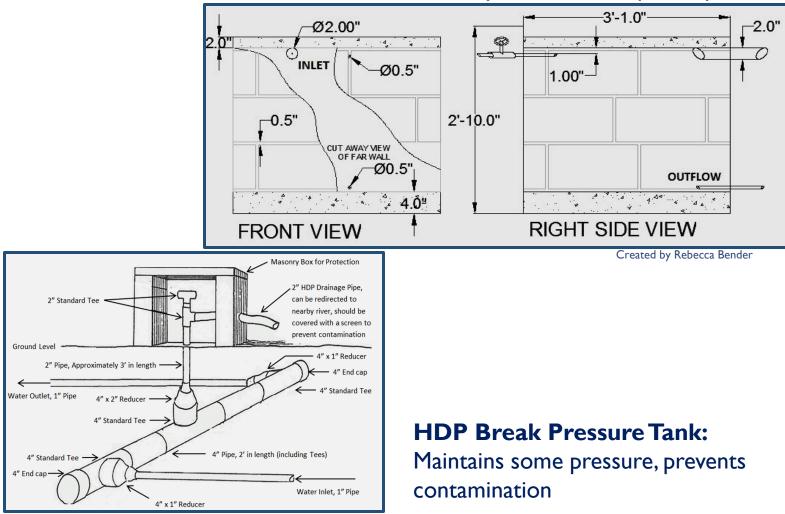
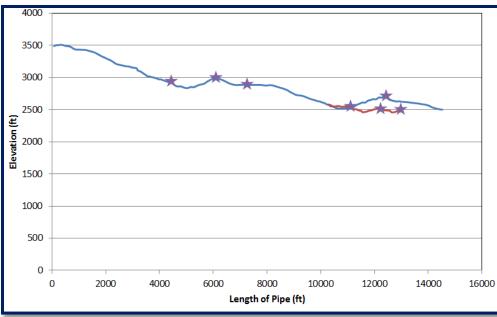



Image courtesy of Thomas Jordan Jr.

Air Release Valves

- To be used at high points
- Prevent blockage
- Can be assembled with simple materials

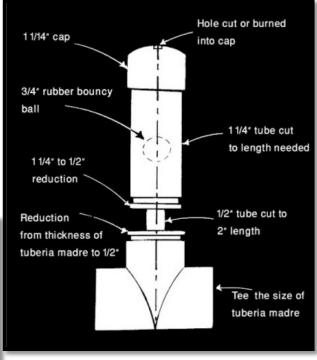


Image provided by Erica Jones

Air Release Valve Construction

Created by Kelsey Maijala

Air Release Valve Locations

- Isolation for repairs
- Ball valves
- Locations
- Underground installation
- Water hammer considerations
 - If a valve is opened or shut too quickly, there can be a shock wave conveyed through the system
 - Location is critical

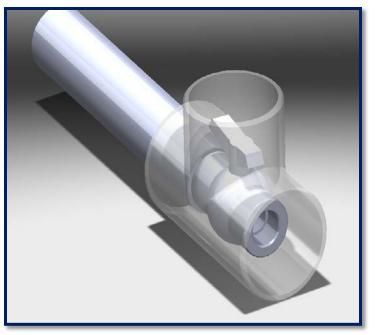


Image designed by Angella Mickowski

Distribution Branches

- Flow reducers on branches
- Consistent water distribution
- Additional lock-out valves
- Spigot construction
- Support

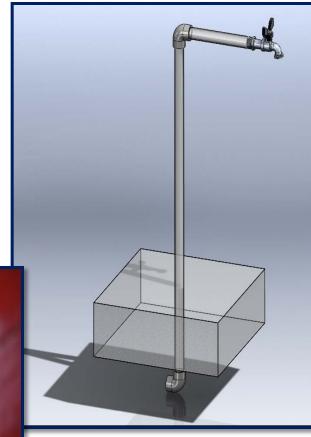


Image designed by Angella Mickowski

Example of Spigot Construction

Estimated Cost

- Local materials
 \$ 7,965
- Skilled labor \$1,254
- Unskilled labor
 In Kind Service
- Cost for each spigot
 \$0.50 per month

	Materials	
	Total Cost Per Unit	Cost
	Spring Box Total	\$121
	Main Pipeline Total	\$4,552
	Pressure Break Total	\$84
	Storage Tank Total	\$745
	HDP Relief Total	\$103
	Distribution Total	\$1,933
	Chlorinator Total	\$64
	Air Release Total	\$364
<u>Total</u>	Materials Skilled Labor	\$7,965 \$1,254
	Unskilled Labor	\$1,234
	All included	\$ 9,219

Construction Schedule

Task Name	Duration	Dec 23, '12 Jan 13, '13 Feb 3, '13 Feb 24, '13 Mar 17, '13
		23 31 8 16 24 1 9 17 25 5 13 21 2
Spring Box Construction	7 days	
Form Placement	2 days	**
Brickwork	5 days	
Storage Tank Construction	15 days	~
Site Compaction	1 day	↔
🗄 Slab	4 days	
Brickwork	7 days	↓ →
In-Line Chlorinator	1 day	₩
Main Pipeline Installation	40 days	
I" Pipeline, Source to Tank	20 days	
	20 days	
Pressure Break Tank Construction	10 days	
HDP Pressure Break Tank Construction	10 days	
Distribution Branches Installation	28 days	
I" Pipeline, Branch to End of Cerro Pena	28 days	
I/2" Branches to Each House	28 days	

Created by Rebecca Bender

- Standing water committee
- Storage tank and pipeline cleaning
- Chlorine replenishment
- Maintenance and pressure checks

Fix-It

Friday

Law No. 41 Established July 1998

Regulated Activities Include:

- The use or discharge of water.
- Treatment of sewage and potable water.

Recommendations :

- Divert overflow back to nearest water source
- Compact after digging to prevent erosion
- Keep streams and creeks clear of extra fill

Image courtesy of Juliette Passer, Esq.

Conclusion

Community needs Development capacity Engineering feasibility

Acknowledgements

- People of Hato Pilón
- Faculty Advisors
 Dr. David Watkins
 Mike Drewyor (P.E.)
 Dr. Brian Barkdoll
- Peace Corps Volunteers
 Pete and Kelly Brands
 Erica Jones

Citations

- Central Intelligence Agency. (2012, November 14). The World Fact Book. Retrieved 2012, from International Organization for Migration: https://www.cia.gov/library/publications/the-world-factbook/geos/pm.html
- Corp., 3. (n.d.). 3M Petrifilm Aerobic Count Plates. Retrieved August 22, 2012, from http://www.3m.com/intl/kr/microbiology/p_aerobic/use3.pdf
- Corp., 3. (n.d.). 3M Petrifilm E.Coli/Coliform Count Plate. Retrieved August 22, 2012, from http://www.3m.com/intl/kr/microbiology/p_ecoli/use3.pdf
- Global Water. (n.d.). How to construct a spring box. Retrieved from http://www.globalwater.org/pdf/Spring_Box.pdf
- Hart, W. (2003). Protective Structures for Springs. Retrieved from http://sites.tufts.edu/ewb/files/2010/04/Spring-Box-Design.pdf
- HERNANDEZ VIRVIESCAS, M. T. (n.d.). THE GENERAL ENVIRONMENTAL LAW OF THE REPUBLIC OF PANAMA. Retrieved November
- 2012, from International Network for Environmental Compliance and Enforcement: http://www.inece.org/5thvol2/virviescas2.pdf
- Minority Rights Group International. (2008, December). Panama Overview. Retrieved November 2012, from World Directory of Minorities and Indigenous People: <u>http://www.minorityrights.org/?lid=4214#current</u>
- Pete and Kelli Brands, E. J. (2012, August 15-21). Ngobe aqueduct system. (T. Hard Body, Interviewer)
- Practical Law. (n.d.). Environment Panama. Retrieved November 18, 2012, from Practical Law Company: http://environment.practicallaw.com/1-508-1137?q=&qp=&qo=&qe=#a917491
- Sarviel, E. (1998). Construction Estimating Reference Data. Craftsman Book Company.
- Thomas D. Jordan, J. (1980). A handbook of gravity-flow water systems. In J. Thomas D. Jordan. Intermediate technology Publications.
- United States Environmental Protection Agency. (2012, August 16). Drinking Water Research . Retrieved August 2012, from United States Environmental Protection Agency: <u>http://www.epa.gov/nrmrl/wswrd/dw/epanet.html</u>
- Unknown. (n.d.). Air Valve components. Erica Jones.

Questions ?

0

