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Success Runs

Consider the probability transition matrix:

P =
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p0 q0 0 0 0 . . .
p1 r1 q1 0 0 . . .
p2 0 r2 q2 0 . . .
p3 0 0 r3 q3 . . .
...
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...
...
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where pi > 0, qi > 0 and pi +qi +ri = 1 for i = 0, 1, 2.... Consider a situation where a component of a system
(a component of a computer, a pipe network segment etc.) has an active life, measured in discrete units, that
is given by the random variable T , where Pr[T = k] = ak, for k = 1, 2..., where

∑

k
= 1∞ak = 1. Suppose

one starts with a fresh component, and each component is replaced by a new component upon failure (you
can also consider a replacement as a service intervention).

Consider the above matrix in the context of such a success run Markov chain, where rk = 0. The age of
the component reverts to 0 on failure and given that the age of the component in service is currently k, the
failure occurs in the next time period with the following conditional probability:

pk = ak+1

ak+1+ak+2+...
(1)

Therefore qk is the probability of the component not failing and instead living another day, so qk = 1 − pk.

Age Replacement Policy

Following from the previous section, let Xn be the age of the component in service at time n. Hence at time
of failure Xn is set to 0 by definition. Consider the policy that calls for replacement of the component at age
N or when it fails, which ever occurs first. Then Xn has a success run Markov chain with following N × N
probability transition matrix (state space is defined on the set of integers from 0 − (N − 1)):

P =


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p0 1 − p0 0 0 0 . . . 0
p1 0 1 − p1 0 0 . . . 0
p2 0 0 1 − p2 0 . . . 0
p3 0 0 0 1 − p3 . . . 0
...

...
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...

...
...
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As state 0 corresponds to a new unit π0 is the long run probability of replacement during any time unit or
the long run replacement per unit time. At Xn = N − 1 a planned replacement occurs. Therefore, πN−1 is
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the long run planned replacement per unit time. Therefore rate of failure of service is the difference between
π0 and πN−1. Solving the following system of equations for the above matrix:

p0π0 + p1π1 + . . . +pN−2πN−2 + πN−1 = π0 (2)

(1 − p0)π0 = π1 (3)

(1 − p1)π1 = π2 (4)

(1 − pN−2)πN−2 = πN−1 (5)

π0 + π1 + . . . +πN−2 + πN−1 = 1 (6)

When solved this leads to:

π0 = 1

A1+A2+A3...+An
(7)

where 1 − pk =
Ak+2

Ak+1

(8)

and πN−1 = ANπ0 (9)

Therefore if the cost of replacement is C and an additional cost of K is incurred when a failure in service
occurs, then the long run total cost per unit time is Cπ0 + K(π0 − πN−1. Choose the replacement age N to
minimize this cost. What is the mean time between replacements?

Equivalence Property

The steady state output of an M/M/s service facility, where sµ > λ, is also a Poisson process with parameter
λ.

Applications: Repairman Model

A system is composed of N machines of which at most M ≤ N can be operating at one time. The rest are
spares. When a machine is operating it operates a random length of time until failure with parameter µ.
When a machine fails it undergoes repair. At most R machines are in repair at any point of time. The repair
time is exponentially distributed with parameter λ. Hence a machine cane be in any of the four states:

• Operating

• Up but not operating

• In repair

• Waiting for repair

There are a total of N machines in the system. At most M can be operating. At most R can be in repair.
Let X(t) be a random variable denoting the number of up machines at the time t. Hence, we can say:

• Number of machines operating: min{X(t), M}

• Number of spares: max{0, X(t) − M}

• Number of down machines: Y (t) = N − X(t)

• Number in repair: max{0, Y (t) − R}
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X(t) = n is a finite state birth and death process with the parameters:

λn = λ × min{N − n, R} =











λR for n = 0, 1, ...., N − R,

λ(N − n) for n = N − R + 1, ...., N

and

µn = µ × min{n, M} =











µn for n = 0, 1, ...., M,

µM for n = M + 1, ...., N

All else can be routinely discovered.


