Systems Design and Engineering

Success Runs, Optimal Replacement & Repairman Problem

March 26, 2010

Success Runs

Consider the probability transition matrix:

$$\mathbf{P} = \begin{bmatrix} p_0 & q_0 & 0 & 0 & 0 & \dots \\ p_1 & r_1 & q_1 & 0 & 0 & \dots \\ p_2 & 0 & r_2 & q_2 & 0 & \dots \\ p_3 & 0 & 0 & r_3 & q_3 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \end{bmatrix}$$

where $p_i > 0$, $q_i > 0$ and $p_i + q_i + r_i = 1$ for i = 0, 1, 2... Consider a situation where a component of a system (a component of a computer, a pipe network segment etc.) has an active life, measured in discrete units, that is given by the random variable T, where $Pr[T = k] = a_k$, for k = 1, 2..., where $\sum_k = 1^{\infty} a_k = 1$. Suppose one starts with a fresh component, and each component is replaced by a new component upon failure (you can also consider a replacement as a service intervention).

Consider the above matrix in the context of such a success run Markov chain, where $r_k = 0$. The age of the component reverts to 0 on failure and given that the age of the component in service is currently k, the failure occurs in the next time period with the following conditional probability:

$$p_k = \frac{a_{k+1}}{a_{k+1} + a_{k+2} + \dots} \tag{1}$$

Therefore q_k is the probability of the component not failing and instead living another day, so $q_k = 1 - p_k$.

Age Replacement Policy

Following from the previous section, let X_n be the age of the component in service at time n. Hence at time of failure X_n is set to 0 by definition. Consider the policy that calls for replacement of the component at age N or when it fails, which ever occurs first. Then X_n has a success run Markov chain with following $N \times N$ probability transition matrix (state space is defined on the set of integers from 0 - (N - 1)):

	p_0	$1 - p_0$	0	0	0		0
	p_1	0	$1 - p_1$	0	0		0
	p_2	0	0	$1 - p_2$	0		0
$\mathbf{P} =$	p_3	0	0	0	$1 - p_3$		0
	:	:	:	:	:	÷	:
	1	0	0	0	0	0	0

As state 0 corresponds to a new unit π_0 is the long run probability of replacement during any time unit or the long run replacement per unit time. At $X_n = N - 1$ a planned replacement occurs. Therefore, π_{N-1} is the long run planned replacement per unit time. Therefore rate of failure of service is the difference between π_0 and π_{N-1} . Solving the following system of equations for the above matrix:

$$p_0 \pi_0 + p_1 \pi_1 + \dots + p_{N-2} \pi_{N-2} + \pi_{N-1} = \pi_0 \tag{2}$$

$$\begin{array}{ll} (1 - p_0)\pi_0 & = \pi_1 \\ (1 - p_1)\pi_1 & = \pi_2 \\ \end{array}$$
(3)

$$(1 - p_1)\pi_1 = \pi_2$$
(4)
$$(1 - p_N, 2)\pi_N, 2 = \pi_N, 1$$
(5)

$$\pi_0 + \pi_1 + \dots + \pi_{N-2} + \pi_{N-1} = 1$$
(6)

When solved this leads to:

$$\pi_0 = \frac{1}{A_1 + A_2 + A_3 \dots + A_n} \tag{7}$$

where
$$1 - p_k = \frac{A_{k+2}}{A_{k+1}}$$
 (8)

$$and \qquad \pi_{N-1} = \qquad A_N \pi_0 \tag{9}$$

Therefore if the cost of replacement is C and an additional cost of K is incurred when a failure in service occurs, then the long run total cost per unit time is $C\pi_0 + K(\pi_0 - \pi_{N-1})$. Choose the replacement age N to minimize this cost. What is the mean time between replacements?

Equivalence Property

The steady state output of an M/M/s service facility, where $s\mu > \lambda$, is also a Poisson process with parameter λ .

Applications: Repairman Model

A system is composed of N machines of which at most $M \leq N$ can be operating at one time. The rest are spares. When a machine is operating it operates a random length of time until failure with parameter μ . When a machine fails it undergoes repair. At most R machines are in repair at any point of time. The repair time is exponentially distributed with parameter λ . Hence a machine cane be in any of the four states:

- Operating
- Up but not operating
- In repair
- Waiting for repair

There are a total of N machines in the system. At most M can be operating. At most R can be in repair. Let X(t) be a random variable denoting the number of up machines at the time t. Hence, we can say:

- Number of machines operating: $min\{X(t), M\}$
- Number of spares: $max\{0, X(t) M\}$
- Number of down machines: Y(t) = N X(t)
- Number in repair: $max\{0, Y(t) R\}$

 $\mathbf{2}$

X(t) = n is a finite state birth and death process with the parameters:

$$\lambda_n = \lambda \times \min\{N-n, R\} = \begin{cases} \lambda R & \text{for } n = 0, 1, \dots, N-R, \\ \lambda(N-n) & \text{for } n = N-R+1, \dots, N \end{cases}$$

and

$$\mu_n = \mu \times \min\{n, M\} = \begin{cases} \mu n & \text{for } n = 0, 1, ..., M, \\ \mu M & \text{for } n = M + 1, ..., N \end{cases}$$

All else can be routinely discovered.