## The Inventory Model

February 24, 2010

Consider the inventory problem. Inventory is stocked so that a store does not fall below demand at any given time. Problem definition is as follows:

- Replenishment of stock takes place at the end of each time period labeled $n=0,1,2 \ldots$.
- Total average demand during any period $n$ is the stationary random variable $\epsilon_{n}$. Hence,

$$
\begin{array}{r}
\operatorname{Pr}_{n}=k=a_{k} \quad \text { for } \quad k=0,1,2, \ldots \\
\text { where } a_{k} \geq 0 \quad \text { and } \quad \sum_{k=0}^{\infty} a_{k}=1 \tag{2}
\end{array}
$$

- A replenishment policy is established as $(s, S)$ where $S>s$ - i.e., the stock is replenished at the end of each time period $n$ iff it dips below $s$ to the level $S$. The stock is checked at the ned of each time period.
- $X_{n}$ denotes the stock size at the end of each time period $n$ just before the stock is replenished (or not). $\left\{X_{n}\right\}$ is considered to be a stochastic process defined on the space $(-\infty, S]$.

Therefore the following relationships hold:

$$
\begin{align*}
X_{n+1} & =X_{n}-\epsilon_{n+1}  \tag{3}\\
&  \tag{4}\\
& \text { if } s<X_{n} \leq S \\
& =\epsilon_{n+1}
\end{align*} \quad \text { if } X_{n} \leq s
$$

If the successive demands $\epsilon_{1}, \epsilon_{2}, \ldots$ are independent random variables then the stock values $X_{0}, X_{1}, X_{2} \ldots$ constitute a Markov chain whose transition probability matrix can be stated to be:

$$
\begin{align*}
P_{i, j}= & \operatorname{Pr}\left\{X_{n+1}=j \mid X_{n}=i\right\} & &  \tag{5}\\
& =\operatorname{Pr}\left\{\epsilon_{n+1}=i-j\right\} & & \text { if } s<i \leq S  \tag{6}\\
& =\operatorname{Pr}\left\{\epsilon_{n+1}=S-j\right\} & & \text { if } i \leq s \tag{7}
\end{align*}
$$

Using the above formulation, consider a spare parts inventory model in which either 0,1 or 2 spare parts are demanded in a period with $\operatorname{Pr}\left\{\epsilon_{n}=0\right\}=0.5, \operatorname{Pr}\left\{\epsilon_{n}=1\right\}=0.4, \operatorname{Pr}\left\{\epsilon_{n}=2\right\}=0.1$.

