Some More Distributions

February 8, 2010

Negative Binomial

Suppose we are required to carry out n Bernoulli trials in succession till r successes are observed (r > 0). Therefore, x is the number of failures or n = r + x. Then if the probability of a success is p, and the random variable X = the number of failures that precede the rth success, then the probability of X = x is given by negative binomial density function, or:

$$nb(x;r,p) = P(X=x) = P(r-1 \ S \ in \ the \ first \ x+r-1 \ trials). P(S) = C_{(r-1)}^{(x+r-1)} p^r (1-p)^x; x = 0, 1, 2, 3...$$
(1)

When r = 1 the negative binomial distribution reduces to the Geometric distribution.

Gamma Distribution

For the parameters α and β where $\alpha > 0$ and $\beta > 0$, a continuous random variable X has a Gamma distribution if the pdf of X is:

$$f(x;\alpha,\beta) = \begin{cases} \frac{1}{\beta^{\alpha}\Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}}; x \ge 0\\ 0; \ x < 0 \end{cases}$$
(2)

where $\Gamma(\alpha) = (\alpha - 1)!$ and $\Gamma(1/2) = \pi$. This function reduces to the exponential distribution when $\lambda = 1/\beta$ and $\alpha = 1$. It can be used to characterize the time to the *k*th arrival in a Poisson process where $\alpha = k$. Consider writing out the equation for k = 1 and intuit the idea behind the distribution. However, note that in this function α can be less than 1, meaning that the function provides a model to fit different kinds of data as well.

Weibull Distribution

For the parameters α and β where $\alpha > 0$ and $\beta > 0$, a continuous random variable X has a Weibull distribution if the pdf of X is:

$$f(x;\alpha,\beta) = \begin{cases} \frac{\alpha}{\beta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\beta}^{\alpha}}; x \ge 0\\ 0; \ x < 0 \end{cases}$$
(3)

This function often provides a very useful fit to observed data. Note that that it reduces to an exponential distribution when $\lambda = 1/\beta$ and $\alpha = 1$. Intuitively you can think of it as a distribution for inter-arrival times in an arrival process in which the arrival rate is increasing when $\alpha > 1$ (reducing inter-arrival times), and decreasing (increasing inter-arrival times) when $\alpha < 1$. This justifies its reduction to a Poisson when $\alpha = 1$ and the arrival rate is constant.