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Bernoulli Experiment, Binomial and Geometric Distributions

The underlying assumptions are:

• An experiment consists of a sequence of n smaller experiments called trials. n is fixed for
a given experiment.

• Each trial has the same two possible outcomes (dichotomous trials) - which we denote by
success (S) and failure (F).

• The trials are independent - out come of any particular trial does not effect the impact
of any other trial.

• Probability of success is constant from trial to trial and we denote it by p

An experiment that meets the above criteria is a Bernoulli Experiment and the random variable
X associated with such an experiment is called a binomial random variable. It is defined as:

X = x = number of successes in n trials

The Binomial distribution function gives the probability of x successes in n trials and is given
by b(x; n, p) which can be read from the binomial tables:

b(x; n, p) =

{

nCxpx(1 − p)n−x; x = 0, 1, 2, 3...

0 otherwise

The cumulative distribution function associated is:

F (x) = P (X ≤ x) =

y=x
∑

y=0

b(x; n, p)

Mean and variance of the Binomial distribution function is np and np(1 − p) respectively. The
probability density function for inter-arrival times between failures or the time to failure after
x successes is given by the Geometric distribution as follows:

P (X = x, n = x + 1) = (1 − p)px = q(1 − q)x

where p is the probability of a successful trial and q = (1 − p). Mean: 1/p and variance:
(1 − p)/p2.

Poisson Process, Poisson and Exponential Distributions

The Poisson arrival counting process is given by {N(t), t ≥ 0} where N(t) denotes the total
number of arrivals up to time t and N(0) = 0. In addition the following three assumptions will
need to be satisfied.
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2• Probability that an arrival occurs between t and (t+∆t) is given by λ∆t+o(∆t) where ∆t
is an incremental element and the value of o(∆t) compared to the value of ∆t is negligible
as ∆t tends to 0:

lim
∆t→0

o(∆t)

∆t
= 0 (1)

• Probability of more than 1 arrival between t and t + ∆t = o(∆t)

• Number of arrivals in non-overlapping intervals are statistically independent

We wish to calculate pn(t) the probability of n arrivals in a time interval of length t, where n
is an integer ≥ 0. We have:

pn(t) =
(λt)ne(−λt)

n!

Mean and variance of the Poisson distribution function is λ and λ respectively.
For a Poisson process the inter-arrival times are exponentially distributed and is given by

the following distribution where λ is the arrival rate:

f(t) = λe−λt, t >= 0

Mean: 1/λ and variance: 1/λ2

Limiting behavior

The binomial distribution function tends to a Normal distribution when p is fixed and n tends
to infinity. It tends to the Poisson distribution function when p → 0, n → ∞ and np → λ∆t
remains constant and is very small.

The exponential function tends to a Normal distribution when t →∞ and λ remains constant
and is very small.

Memoryless Property

Exponential and geometric distributions can be used to model distribution of component life
times or inter-arrival times of failures in systems.They are the only distributions that exhibit
a memoryless property. The memoryless property states that the distribution of additional
lifetime (or the time to next failure) is exactly the same as the original distribution of lifetime
(or the time to failure).

Suppose a component life time is exponentially distributed with parameter λ. Then we can
say that if the component hasn’t failed for a period of t0 (t0 > 0) hours then the probability
of it not failing for at least another additional t hours is identical to it not failing for t hours.
This is stated as:

P (X ≥ t + t0|X ≥ t0) = P (X ≥ t)

The probability of a bus arriving in 40 minutes given that 30 minutes has passed is the same
as the probability of the bus arriving in 10 minutes.


