Systems Design and Engineering

Problem sets

April 28, 2010

1 Classwork 1

Dated: February 13, 2010.

1.1 Problem 1

Every period that the process spends in state 0 it incurs a cost of $\$ 2$. Every period that the process spends in state 1 it incurs a cost of $\$ 5$. Every period that the process spends in state 2 it incurs a cost of $\$ 3$. What is the long run cost per period associated with this Markov chain?

1.2 Problem 2

A Markov chain $X_{0}, X_{1}, X_{2} \ldots$ has the transition probability matrix:

$$
\mathbf{P}=\left[\begin{array}{lll}
0.3 & 0.2 & 0.5 \\
0.5 & 0.1 & 0.4 \\
0.5 & 0.2 & 0.3
\end{array}\right]
$$

Initial Distribution: $p_{0}=0.5, p_{1}=0.5$
Calculate:

1. $P_{\gamma}\left\{X_{2}=1, X_{3}=1 \mid X_{1}=0\right\}$.
2. $P_{\gamma}\left\{X_{1}=1, X_{2}=1 \mid X_{0}=0\right\}$.

2 Classwork 2

Dated: February 22, 2010.

2.1 Problem 1

Consider a BD Process $\lambda_{n}=2$ for $n=0,1, \ldots$, and $\mu_{1}=2 \mu_{n}=4$ for $n=2,3, \ldots$.

1. Draw the rate diagram
2. Express P_{n} symbolically. Calculate P_{0}, P_{1}
3. What is the mean arrival rate for this system?

3 Classwork 3

Dated: March 01, 2010.

3.1 Problem 1

Consider the Markov Chain $\left\{X_{n}\right\}$ whose transition probability matrix is:

$$
\mathbf{P}=\left[\begin{array}{lll}
1 & 0 & 0 \\
\alpha & \beta & \gamma \\
0 & 0 & 1
\end{array}\right]
$$

Let $\mathrm{T}=\min \left\{n \geq 0 ; X_{n}=0\right.$ or $\left.X_{n}=2\right\}$. T is defined as the time to absorption. Find $u=\operatorname{Pr}\left\{X_{T}=0 \mid X_{0}=1\right\}$ and $v=E\left\{T \mid X_{0}=1\right\}$

