Problem 1

Consider the scheduling a project consisting of 3 sequences as follows:

- Each sequence \(i \) \((i = 1, 2, 3)\) has four activities \(A_i, B_i, C_i, D_i, E_i \), excepting for sequence 2 that does not include the activity \(B \).

- In each sequence, activities \(B \) and \(C \) cannot start till activity \(A \) is completed, and activity \(D \) cannot start till activities \(B \) and \(C \) are completed. Activity \(E \) cannot start till activity \(D \) is completed.

- Each of the activities \(A_i, B_i, C_i, D_i \) and \(E_i \) share a critical resource.

- All relationships are considered Finish-to-Start with 0 required lag.

Develop the network diagram for the above project clearly showing all resource and technical constraints separately. The activity durations are as follows:

- \(A_1 = 3, A_2 = 2, A_3 = 3 \).
- \(B_1 = 1, B_3 = 1 \).
- \(C_1 = 4, C_2 = 3, C_3 = 4 \).
- \(D_1 = 2, D_2 = 5, D_3 = 2 \).
- \(E_1 = 1, E_2 = 1, E_3 = 1 \).

Please clearly show the critical path in the network.

Problem 2

Develop a network diagram and schedule it for the AISC case study (durations available online).