Definitions

A birth refers to the arrival of a new customer and death refers to the departure of a served customer.

State of the system at time t, ($t \geq 0$) is given by $N(t) =$ the number of customers in the system at time t.

Individual births and deaths occur randomly and the mean occurrence rates depend only upon the current state of the system.

Assumptions

The following assumptions apply:

- Given $N(t) = n$, the current probability distribution of the remaining time until the next birth (arrival) is exponential with parameter λ_n ($n = 0, 1, 2, ...$).

- Given $N(t) = n$, the current probability distribution of the remaining time until the next death (service completion) is exponential with parameter μ_n ($n = 0, 1, 2, ...$).

- The random variable of assumption 1 (the remaining time until the next birth) and the random variable of assumption 2 (the remaining time until the next death) are mutually independent. The next transition in the state of the process is either $n \rightarrow n + 1$ (a single birth) or $n \rightarrow n - 1$ (a single death) depending on whether the former or latter random variable is smaller.

λ_n and μ_n can be different for different values of n if arriving customers become increasingly likely to balk as n increases, and renege as queue size increases respectively.

Balance Equation

$E_n(t) =$ number of times the process enters state n by time t.
$L_n(t) =$ number of times the process leaves state n by time t.

Mean rate at which process enters state n is given by:

$$\lim_{t \to \infty} \frac{E_n(t)}{t}$$

Mean rate at which process leaves state n is given by:

$$\lim_{t \to \infty} \frac{L_n(t)}{t}$$

Rate in = Rate out. For any state of the system n, mean entering rate = mean leaving rate.
Relevant Formulae

\[P_n = C_n P_0 \] (3)

Given that:

\[\sum_{n=0}^{\infty} P_n = 1 \] (4)

Where:

\[C_n = \frac{\lambda_{n-1}\lambda_{n-2}...\lambda_0}{\mu_n\mu_{n-1}...\mu_1} \] (5)

The following formula apply, where the symbols have their usual meaning:

\[L = \sum_{n=0}^{\infty} n P_n \] (6)

\[L_q = \sum_{n=0}^{\infty} (n - s) P_n \] (7)

Consider the M/M/1 case:

\[\lambda_n = \lambda, n = 0, 1... \] (8)

\[\mu_n = \mu, n = 0, 1... \] (9)

\[C_n = \left(\frac{\lambda}{\mu} \right)^n = \rho^n \] (10)

\[P_0 = (1 - \rho) \] (11)

\[P_n = (1 - \rho)\rho^n \] (12)

\[L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n(1 - \rho)\rho^n = \frac{\lambda}{\mu - \lambda} \] (13)

\[L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} \] (14)

Consider the M/M/s case:

\[\lambda_n = \lambda, n = 0, 1... \] (15)

\[\mu_n = \begin{cases} n\mu, & n \leq s \\ s\mu, & n > s \end{cases} \] (16)

\[C_n = \begin{cases} \frac{(\lambda/\mu)^n}{n!} & \text{for } n = 1, 2,...s \\ \frac{(\lambda/\mu)^n}{s!s^{n-s}} & \text{for } n = s, s+1,... \end{cases} \] (17)

\[L_q = \frac{P_0(\lambda/\mu)^s\rho}{s!(1 - \rho)^2} \] (18)

\[P_0 = 1/\left[\sum_{n=0}^{s-1} \frac{(\lambda/\mu)^n}{n!} + \frac{(\lambda/\mu)^s}{s!} \frac{1}{1 - \lambda/(s\mu)} \right] \] (19)

Consider the finite queue variation of the M/M/1 model (M/M/1/K)

\[\lambda_n = \begin{cases} \lambda & \text{for } n = 0, 1, 2,...K - 1 \\ 0 & \text{for } n \geq K \end{cases} \]
\[C_n = \begin{cases} \frac{\lambda^n}{\mu} & \text{for } n = 0, 1, 2, \ldots K \\ 0 & \text{for } n = 0, 1, 2, \ldots K - 1 \end{cases} \]

\[P_0 = \frac{1 - \rho}{1 - \rho^{K+1}} \quad (20) \]

\[P_n = \frac{1 - \rho}{1 - \rho^{K+1}} \rho^n, \quad \text{for } n = 0, 1, 2, \ldots K \quad (21) \]

\[L = \frac{\rho}{1 - \rho} - \frac{(K + 1)\rho^{K+1}}{1 - \rho^{K+1}} \quad (22) \]

\[L_q = L - (1 - P_0) \quad (23) \]

Applications: Repairman Models

A system is composed of \(N \) machines of which at most \(M \leq N \) can be operating at one time. The rest are spares. When a machine is operating it operates a random length of time until failure with parameter \(\mu \). When a machine fails it undergoes repair. At most \(R \) machines are in repair at any point of time. The repair time is exponentially distributed with parameter \(\lambda \). Hence a machine can be in any of the four states:

- Operating
- Up but not operating
- In repair
- Waiting for repair

There are a total of \(N \) machines in the system. At most \(M \) can be operating. At most \(R \) can be in repair. Let \(X(t) \) be a random variable denoting the number of up machines at the time \(t \). Hence, we can say:

- Number of machines operating: \(\min\{X(t), M\} \)
- Number of spares: \(\max\{0, X(t) - M\} \)
- Number of down machines: \(Y(t) = N - X(t) \)
- Number in repair: \(\max\{0, Y(t) - R\} \)

\(X(t) = n \) is a finite state birth and death process with the parameters:

\[\lambda_n = \lambda \times \min\{N - n, R\} = \begin{cases} \lambda R & \text{for } n = 0, 1, \ldots, N - R, \\ \lambda(N - n) & \text{for } n = N - R + 1, \ldots, N \end{cases} \]

and

\[\mu_n = \mu \times \min\{n, M\} = \begin{cases} \mu n & \text{for } n = 0, 1, \ldots, M, \\ \mu M & \text{for } n = M + 1, \ldots, N \end{cases} \]

All else can be routinely discovered.