CE 5710 - Modeling \& Simulation

Homework 2: Due February 13, 2012

Arguments derived from probabilities are idle

February 2, 2012

Problem 1

Derive the Poisson process by using the assumption that the number of arrivals in non-overlapping intervals are statistically independent and then applying the binomial distribution.
[Hint: Consider the following approximation:

$$
\begin{equation*}
\left[1-\frac{\lambda}{n}\right]^{n} \simeq e^{\lambda} \tag{1}
\end{equation*}
$$

for very large values of n and moderate values of λ.]

Problem 2

You are given two Poisson processes with intensities λ_{1} and λ_{2}. Find the probability that there is an occurrence of the first stream before the second, starting at time $t=0$.
[Hint: Use the memoryless property].

Problem 3

(i) A Markov chain $X_{0}, X_{1}, X_{2} \ldots$ has the transition probability matrix:

$$
\mathbf{P}=\left[\begin{array}{ccc}
0.7 & 0.2 & 0.1 \\
0 & 0.6 & 0.4 \\
0.5 & 0 & 0.5
\end{array}\right]
$$

Calculate:

1. $P_{\gamma}\left\{X_{2}=1, X_{3}=1 \mid X_{1}=0\right\}$.
2. $P_{\gamma}\left\{X_{1}=1, X_{2}=1 \mid X_{0}=0\right\}$.
(ii) A Markov chain $X_{0}, X_{1}, X_{2} \ldots$ has the transition probability matrix:

$$
\mathbf{P}=\left[\begin{array}{lll}
0.1 & 0.2 & 0.7 \\
0.2 & 0.2 & 0.6 \\
0.6 & 0.1 & 0.3
\end{array}\right]
$$

Calculate:

1. The 2-step transition matrix P^{2}
2. $P_{\gamma}\left\{X_{3}=1 \mid X_{1}=0\right\}$.
3. $P_{\gamma}\left\{X_{3}=1 \mid X_{0}=0\right\}$.

Problem 4

A Markov chain $X_{0}, X_{1}, X_{2} \ldots$ has the transition probability matrix:

$$
\mathbf{P}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0.1 & 0.4 & 0.1 & 0.4 \\
0.2 & 0.1 & 0.6 & 0.1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Use First Step Analysis to calculate

- The probability of absorption in state 0 given that the initial state X_{0} is 1 and 2 respectively.
- The expected time to absorption in state 0 given that the initial state X_{0} is 1 and 2 respectively.

Problem 5

Consider a directed graph G, consisting of 6 vertices: $V=\left\{v_{1}, \ldots, v_{6}\right\}$ where each of the nodes $v_{1}, \ldots v_{5}$ are positioned on the vertices of a pentagon and the node v_{6} is positioned in its centroid. The set of edges are:
$E=\left\{e_{2,6}, e_{3,6}, e_{2,3}, e_{1,2}, e_{3,4}, e_{1,6}, e_{4,6}, e_{6,2}, e_{6,3}, e_{3,2}, e_{2,1}, e_{4,3}, e_{6,1}, e_{6,4}, e_{6,5}, e_{4,6}, e_{1,6}\right\}$
If the node 5 is an absorbing node, then estimate the expected number of steps that will be necessary for a random walker to land up at node 5 given that he may start at any of the other possible nodes.

Problem 6

An airline system has 2 computers only one of which is in operation at any given time. A computer can break down on any given day with probability p. There is a single repair facility that takes 2 days to repair the machine. Only one computer at a time ca be repaired and both machines are extremely unlikely to fail on the same day. Form a Markov chain by taking as states the pairs (x, y) where x is the number of machines in operation at the end of the day, and $y=1$ if a day's work has been expended on a machine not yet repaired and 0 otherwise. Calculate the reliability of the system defined by the percentage of the time that at least one computer is functioning.

