Warm Mix Asphalt Site Visit

- Allows Mixing, Transporting and Laying of Asphalt at lower temperatures (~ 100 F) \square Impacts on construction site?
- Reduced fuel (and energy) consumption
- Reduced emissions
- Easier lay-down and compaction

WMA: Example of Integration

- Comparable Durability \& Long Term Performance
- Reduced Environmental Impacts
- Economic Benefits
- Worker safety
\qquad

Cost Control

- Controlling on-going expense
- Information required:
$\square \%$ Completion
\square Estimate of cost of material stored on-site
\square Accrued expense (so far, independent of payment)
\square Estimated cost
- Check Accrued Expenses so far vs. Estimated Expense
- Accrued expense/div
$\square+$ Cash expenditures
\square - Inventory valuation
$\square+$ Accounts payable
- Estimated expense/ As-planned expense:
\square \% completion x Estimated

Cost Control

Broad Scope Estimates

Unit Cost (UC) forecast $=(A+4 B+C) / 6$
$A=$ Minimum unit cost of previous projects
$B=$ Average unit cost of previous projects
$C=$ Maximum unit cost of previous projects

Adjustment: Time

- $\mathrm{I}(2006+\mathrm{n})=\mathrm{l}(2006)(1+\mathrm{i})^{\mathrm{n}}$
- $\mathrm{I}(2006)=7763.15 \mathrm{i}=3.0 \%$ (0.03)

```
Cost(Year B) =
    Cost(Year A)[(Index B)/(Index A)]
```


Adjustment: Location

- To adjust for local differences
- RS Means page 458
- 49931: 92.2
$\operatorname{Cost}($ City B) $=$

> Cost(City A)[I(City B)/I(City A)]

Adjustment: Process Unit Capacity
(Chapter 4)
$\begin{array}{l}\text { Cost(Process Unit B) }=\operatorname{Cost} \text { (Process Unit A) } \\ \times\left[C(\text { Project B)/C(Project A) }]^{a}\right.\end{array}$
$\begin{array}{l}C()=\text { Process unit capacity } \\ \mathrm{a}=\text { Slope of cost capacity curve }\end{array}$
$\begin{array}{l}\text { Relationship of plant cost vs unit production } \\ \text { assumed linear over narrow capacity } \\ \text { ranges }\end{array}$

Adjustment: Unit cost for size

- Unit cost goes down for higher outputs
- Use historical data to build linear relationship
$\square Y=m X+c$
$\square Y$: Cost per unit X : Number of units
\square For given ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) calculate m and c

> Using the information provided in Figure estimate the combined design-construction cost of a High School with a total area of 170,000 SF, face brick with concrete block back-up in the exterior walls, a steel framing system, 10 story height, four elevators of 2,500 pounds capacity each, and two 40' height aluminum flagpoles. Calculate how much more would it cost to include a 20,000 SF basement as a percentage of the original design-construction costs.

