Conceptual Estimates
- To bid or not to bid
Lecture 2
09/11/06

Should we bid?
- Bonding capacity
- Nature of project and available expertise
- Contractual terms
- Contractor responsibilities – relationship to owner/other players
- Conceptual estimate of time and money to be invested

Bid Documents
- Invitations to bid
- Instructions to bidders
- Bid forms
- Drawings
- Specifications
- Requirements for bonds and insurances
- Appendices

Contract Documents
- Bid documents after contract has been signed
 + Change orders during the construction process
 + Signed agreements, bonds, insurances, plans, specs. (CSI, DOT etc)

Types of Contracts
- Lump sum
- Unit-price
- Cost + Fee
- Incentive Contracts
- Guaranteed Maximum Price (GMP)

Reading for next week: The Process (Chapter 3)
- Preliminary workload assessment
- Workload breakdown
- Preliminary work-plan
- Gather expertise around: material suppliers, vendors, contractors etc.
- Laying down expectations
- Establishment of estimate work plan, staffing requirements
- Iterate
Bid Forms

- **Lump-sum Contracts**
 - Base bid prepared for entire project (At-Risk)
 - When quantity of work to be performed is definite and well defined
- **Unit-price Contracts**
 - Specify unit costs for necessary work
 - Be careful to specify all work units
 - Direct cost +

Players

- Owner (Provides the money: Project financing!!)
- Architects/Engineers (Provides all plans/specs.: contract documents)
- Contractors (Builds in accordance with the contract)
- Sub-contractors

What is a Project Delivery System?

- Definition of scope and project requirements
- Procedures, actions, and sequence of events
- Contractual requirements, obligations, responsibilities
- Inter-relationships between “players”
- Mechanisms for managing time
- Forms of agreements and documentation of activity

Defining characteristics

- Are design and construction under separate contracts?
- What is the final selection criteria for the constructor?

Project Delivery Systems

- Design Bid Build (Traditional)
 - Separate contracts, lowest bid
- Construction Management at-Risk (GMP)
 - Separate contracts, not just lowest cost
- Design Build
 - Combined contracts
- Design Build Operate
 - Combined contracts

Agency Construction Manager

- Not at-Risk
- Responsible for managing the construction project
- Activities include: Scheduling, estimating, cost control, documenting paper work
- May have an incentive clause
Bid Analysis

- **CSI Format (slide)**
- **Conversion ratio (CR):**
 - Ratio by which raw materials are converted to the finished product

 \[CR = \frac{TB - MC}{MC} \]

 - **TB**: Total Bid Price
 - **MC**: Material Cost including taxes

Conceptual Estimates

- Based on primary function
 - Hospitals: cost/bed
 - Schools: cost/sq-ft
- Based on area/volume
- Modified for:
 - Time
 - Location
 - Capacity
 - Size

Broad Scope Estimates

Unit Cost (UC) forecast = \((A + 4B + C) / 6\)

- **A**: Minimum unit cost of previous projects
- **B**: Average unit cost of previous projects
- **C**: Maximum unit cost of previous projects

Cost Index

- Used to update historical cost data
- Take into account inflation \((i)\)
- Base year Jan 1, 1913
- Page 437 of RS Means (See announcements for latest ENR construction cost index)

Adjustment: Time

- \[I(2006 + n) = I(2006)(1+i)^n \]
- \[I(2006) = 7763.15 \quad i = 3.0\% \ (0.03) \]

\[\text{Cost(Year B)} = \frac{\text{Cost(Year A)}[(\text{Index B})/(\text{Index A})]}{\text{Cost(Year A)}} \]
Adjustment: Location

- To adjust for local differences
- RS Means page 458
- 49931: 92.2

\[\text{Cost}(\text{City B}) = \frac{\text{Cost}(\text{City A}) \cdot (\text{I}(\text{City B}) / \text{I}(\text{City A}))}{\text{I}(\text{City B}) / \text{I}(\text{City A})} \]

Adjustment: Process Unit Capacity

\[\text{Cost}(\text{Process Unit B}) = \text{Cost}(\text{Process Unit A})
\times \left[\frac{\text{C}(\text{Project B})}{\text{C}(\text{Project A})} \right]^a \]

- \(\text{C}() = \) Process unit capacity
- \(a = \) Slope of cost capacity curve

Relationship of plant cost vs unit production assumed linear over narrow capacity ranges

Adjustment: Unit cost for size

- Unit cost goes down for higher outputs
- Use historical data to build linear relationship
 - \(Y = mX + c \)
 - \(Y: \) Cost per unit \(X: \) Number of units
 - For given \((x_1, y_1)\) and \((x_2, y_2)\) calculate \(m\) and \(c\)

Payment Schedules

- Working on borrowed money
- Payments made on % completion
- An agreed schedule of payment:
 - Owner’s Bid Price \((\text{pre O&P)/Division Reqmt. = Cost Allocation per division (CA/div})\)
 - \(\text{CA/div} \times \text{Contractor’s estimate = Division payment sched.}\)
- Balanced/Un-balanced bids

<table>
<thead>
<tr>
<th>Division</th>
<th>Owner’s Estimate</th>
<th>Cost Allocation</th>
<th>Payment Schedule</th>
<th>Contractor’s Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Engineering</td>
<td>357,300</td>
<td>7.1</td>
<td>270,484</td>
<td>305,242</td>
</tr>
<tr>
<td>2. Plant Construction</td>
<td>399,100</td>
<td>9.9</td>
<td>358,143</td>
<td>3,028,762</td>
</tr>
<tr>
<td>3. Chemistry</td>
<td>504,800</td>
<td>1.0</td>
<td>504,800</td>
<td>504,800</td>
</tr>
<tr>
<td>4. Heating</td>
<td>3,702,000</td>
<td>15.7</td>
<td>1,971,000</td>
<td>2,424,000</td>
</tr>
<tr>
<td>5. HVAC</td>
<td>5,472,000</td>
<td>33.0</td>
<td>9,103,000</td>
<td>1,657,000</td>
</tr>
<tr>
<td>6. Structural</td>
<td>2,843,000</td>
<td>15.8</td>
<td>1,179,000</td>
<td>3,083,000</td>
</tr>
<tr>
<td>7. Plumbing</td>
<td>321,000</td>
<td>2.4</td>
<td>317,500</td>
<td>28,000</td>
</tr>
<tr>
<td>8. Utilities</td>
<td>346,000</td>
<td>9.6</td>
<td>321,000</td>
<td>32,100</td>
</tr>
<tr>
<td>9. Electrical</td>
<td>944,000</td>
<td>10.6</td>
<td>944,000</td>
<td>944,000</td>
</tr>
<tr>
<td>10. Fire Protection</td>
<td>1,358,000</td>
<td>9.1</td>
<td>1,235,000</td>
<td>1,235,000</td>
</tr>
<tr>
<td>11. Special Combustion</td>
<td>12,375</td>
<td>9.6</td>
<td>1,192,000</td>
<td>1,202,000</td>
</tr>
<tr>
<td>12. Elevating Systems</td>
<td>164,000</td>
<td>2.8</td>
<td>164,000</td>
<td>164,000</td>
</tr>
<tr>
<td>13. HVAC</td>
<td>8,342,000</td>
<td>16.3</td>
<td>1,971,000</td>
<td>5,371,000</td>
</tr>
<tr>
<td>14. Electrical</td>
<td>4,420,000</td>
<td>14.0</td>
<td>1,971,000</td>
<td>5,371,000</td>
</tr>
<tr>
<td>Total for all Div</td>
<td>16,032,000</td>
<td>89.9</td>
<td>18,104,000</td>
<td>11,241,000</td>
</tr>
</tbody>
</table>

*Cost and Profits (15%) = 4,458,700

*Final Bid Price = 17,088,700

Figure 2.3: An Example of a Payment Schedule Calculation
Cost Control

- Controlling on-going expense
- Information required:
 - % Completion
 - Estimate of cost of material stored on-site
 - Accrued expense (so far, independent of payment)
 - Estimated cost
- Check Accrued Expenses so far vs. Estimated Expense

Cost Control

- Accrued expense/div
 - + Cash expenditures
 - - Inventory valuation
 - + Accounts payable

- Estimated expense/As-planned expense:
 - % completion x
 - Estimated expense/div.

Compare