

## Checks

- Reasonableness
- Compare with similar projects
- Compare with industry standard estimates
= \$/sq-ft, \$/pupils, \$/capacity


## The Process (Chapter 3)

- Preliminary workload assessment
- Workload breakdown
- Preliminary work-plan
- Gather expertise around: material suppliers, vendors, contractors etc.
- Laying down expectations
- Establishment of estimate work plan, staffing requirements
- Iterate


## Risk Analysis

- Why do it?
- To assign contingency
- What are the methods?
- Expected risk (Max Risk x probability)
- \% Of base price
- Simulate different possibilities: explore "whatif" scenarios: CrystalBall software
- Sensitivity Analysis


## Conceptual Estimates

- Based on primary function
- Hospitals: cost/bed
- Schools: cost/sq-ft
- Based on area/volume
- Modified for:
- Time
- Location
- Capacity
- Size


## Broad Scope Estimates

Unit Cost $(\mathrm{UC})$ forecast $=(\mathrm{A}+4 \mathrm{~B}+\mathrm{C}) / 6$

A = Minimum unit cost of previous projects
B = Average unit cost of previous projects
$\mathrm{C}=$ Maximum unit cost of previous projects

## Cost Index

- Used to update historical cost data
- Take into account inflation (i)
- Base year Jan 1, 1913
- Page 437 of RS Means (See announcements for latest ENR construction cost index)


## Adjustment: Time

- $\mathrm{I}(2005+\mathrm{n})=\mathrm{I}(2005)(1+\mathrm{i})^{\mathrm{n}}$
- $\mathrm{I}(2005)=7518.28 \mathrm{i}=3.0 \%(0.03)$
$\operatorname{Cost}($ Year $B)=$
$\operatorname{Cost}($ Year A) $[($ Index B)/(Index A)]


## Adjustment: Process Unit Capacity

## (Pa\&

$\operatorname{Cost}($ Process Unit B) $)=\operatorname{Cost}($ Process Unit $A)$
$\mathrm{x}[C(\text { Project } \mathrm{B}) / C(\text { Project } \mathrm{A})]^{\mathrm{a}}$
$C()=$ Process unit capacity
$\mathrm{a}=$ Slope of cost capacity curve

Relationship of plant cost vs unit production assumed linear over narrow capacity ranges

## Adjustment: Unit cost for size

- Unit cost goes down for higher outputs
- Use historical data to build linear relationship
- $Y=m X+c$
- Y : Cost per unit X : Number of units
- For given $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ calculate $m$ and $c$

