Table of Contents

Preface
Contributors and Committee Members

1. Introduction
 David W. Watkins Jr.

2. Combined Sewer Overflows in the Milwaukee Metropolitan Sewerage District Conveyance and Treatment System
 Eric Loucks, David Watkins, and Teresa Culver

3. Linear Programming for Flood Control on the Iowa and Des Moines Rivers
 David W. Watkins Jr.

4. Evolution of Agricultural Watersheds in a Systems Management Framework
 John W. Nicklow, Girmay Misgna, Christopher L. Lant, and Steven E. Kraft

5. Total Maximum Daily Load (TMDL) for Whiteoak Bayou in Harris County, Texas
 Tina Petersen, Kristin White, and Eric Loucks

6. Developing a Regulation Policy for Lake Superior: Optimization and Trade-Off Analysis
 Sara M. O’Connell, David W. Watkins Jr., and Matthew M. McPherson

7. Computer Aided Negotiation and River Basin Management in the Delaware
 Megan Wiley Rivera and Daniel Sheer

8. Optimization for Urban Watershed Management: Stormwater Runoff and Nonpoint Pollution Control
 Arthur McGarity

 Bereket K. Tesfatsion and David E. Rosenberg

 Bereket K. Tesfatsion

 Richard M. Vogel

12. Assessing Educational Benefits of Case Studies
 David W. Watkins Jr.

Appendix: Notes for Instructors

Index
<table>
<thead>
<tr>
<th>Title:</th>
<th>Water Resources Systems Analysis through Case Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtitle:</td>
<td>Data and Models for Decision Making</td>
</tr>
<tr>
<td>Authors/Editors:</td>
<td>David W. Watkins Jr., Ph.D.</td>
</tr>
<tr>
<td>Pub Year:</td>
<td>2013</td>
</tr>
<tr>
<td>Price:</td>
<td>$60</td>
</tr>
<tr>
<td>Publisher:</td>
<td>ASCE</td>
</tr>
</tbody>
</table>

Full Description:

Water Resources Systems Analysis through Case Studies: Data and Models for Decision Making consists of 10 case studies suitable for the classroom to demonstrate engineers' use of widely available modeling software in evaluating complex environmental and water resources systems.

Simulation and optimization models, visualization tools, and spatial analysis tools are applied to real-life situations. Each case study includes background on the geography, hydrology, and natural resources of the area as well as relevant social, economic, developmental, and political issues. A series of active-learning exercises is provided, along with additional resources for instructors. Software is not included, but all programs and data sets are freely available online.

Audience: Scholarly/Professional

Primarily intended for students in upper-level undergraduate and graduate level systems analysis courses, this book may also be of interest to practicing engineers in the field of water resources planning and management.